亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Organizational charts, also known as org charts, are critical representations of an organization's structure and the hierarchical relationships between its components and positions. However, manually extracting information from org charts can be error-prone and time-consuming. To solve this, we present an automated and end-to-end approach that uses computer vision, deep learning, and natural language processing techniques. Additionally, we propose a metric to evaluate the completeness and hierarchical accuracy of the extracted information. This approach has the potential to improve organizational restructuring and resource utilization by providing a clear and concise representation of the organizational structure. Our study lays a foundation for further research on the topic of hierarchical chart analysis.

相關內容

Backpropagation (BP) is widely used for calculating gradients in deep neural networks (DNNs). Applied often along with stochastic gradient descent (SGD) or its variants, BP is considered as a de-facto choice in a variety of machine learning tasks including DNN training and adversarial attack/defense. Recently, a linear variant of BP named LinBP was introduced for generating more transferable adversarial examples for performing black-box attacks, by Guo et al. Although it has been shown empirically effective in black-box attacks, theoretical studies and convergence analyses of such a method is lacking. This paper serves as a complement and somewhat an extension to Guo et al.'s paper, by providing theoretical analyses on LinBP in neural-network-involved learning tasks, including adversarial attack and model training. We demonstrate that, somewhat surprisingly, LinBP can lead to faster convergence in these tasks in the same hyper-parameter settings, compared to BP. We confirm our theoretical results with extensive experiments.

We propose and study a framework for quantifying the importance of the choices of parameter values to the result of a query over a database. These parameters occur as constants in logical queries, such as conjunctive queries. In our framework, the importance of a parameter is its SHAP score. This score is a popular instantiation of the game-theoretic Shapley value to measuring the importance of feature values in machine learning models. We make the case for the rationale of using this score by explaining the intuition behind SHAP, and by showing that we arrive at this score in two different, apparently opposing, approaches to quantifying the contribution of a parameter. The application of the SHAP score requires two components in addition to the query and the database: (a) a probability distribution over the combinations of parameter values, and (b) a utility function that measures the similarity between the result for the original parameters and the result for hypothetical parameters. The main question addressed in the paper is the complexity of calculating the SHAP score for different distributions and similarity measures. We first address the case of probabilistically independent parameters. The problem is hard if we consider a fragment of queries that is hard to evaluate (as one would expect), and even for the fragment of acyclic conjunctive queries. In some cases, though, one can efficiently list all relevant parameter combinations, and then the SHAP score can be computed in polynomial time under reasonable general conditions. Also tractable is the case of full acyclic conjunctive queries for certain (natural) similarity functions. We extend our results to conjunctive queries with inequalities between variables and parameters. Finally, we discuss a simple approximation technique for the case of correlated parameters.

Deception, which includes leading cyber-attackers astray with false information, has shown to be an effective method of thwarting cyber-attacks. There has been little investigation of the effect of probing action costs on adversarial decision-making, despite earlier studies on deception in cybersecurity focusing primarily on variables like network size and the percentage of honeypots utilized in games. Understanding human decision-making when prompted with choices of various costs is essential in many areas such as in cyber security. In this paper, we will use a deception game (DG) to examine different costs of probing on adversarial decisions. To achieve this we utilized an IBLT model and a delayed feedback mechanism to mimic knowledge of human actions. Our results were taken from an even split of deception and no deception to compare each influence. It was concluded that probing was slightly taken less as the cost of probing increased. The proportion of attacks stayed relatively the same as the cost of probing increased. Although a constant cost led to a slight decrease in attacks. Overall, our results concluded that the different probing costs do not have an impact on the proportion of attacks whereas it had a slightly noticeable impact on the proportion of probing.

The ability to derive useful information by asking clarifying questions (ACQ) is an important element of real life collaboration on reasoning tasks, such as question answering (QA). Existing natural language ACQ challenges, however, evaluate generations based on word overlap rather than the value of the information itself. Word overlap is often an inappropriate metric for question generation since many different questions could be useful in a given situation, and a single question can be phrased many different ways. Instead, we propose evaluating questions pragmatically based on the value of the information they retrieve. Here we present a definition and framework for natural language pragmatic asking of clarifying questions (PACQ), the problem of generating questions that result in answers useful for a reasoning task. We also present fact-level masking (FLM), a procedure for converting natural language datasets into self-supervised PACQ datasets by omitting particular critical facts. Finally, we generate a PACQ dataset from the HotpotQA dataset using FLM and evaluate several zero-shot language models on it. Our experiments show that current zero-shot models struggle to ask questions that retrieve useful information, as compared to human annotators. These results demonstrate an opportunity to use FLM datasets and the PACQ framework to objectively evaluate and improve question generation and other language models.

The characteristics of data like distribution and heterogeneity, become more complex and counterintuitive as the dimensionality increases. This phenomenon is known as curse of dimensionality, where common patterns and relationships (e.g., internal and boundary pattern) that hold in low-dimensional space may be invalid in higher-dimensional space. It leads to a decreasing performance for the regression, classification or clustering models or algorithms. Curse of dimensionality can be attributed to many causes. In this paper, we first summarize five challenges associated with manipulating high-dimensional data, and explains the potential causes for the failure of regression, classification or clustering tasks. Subsequently, we delve into two major causes of the curse of dimensionality, distance concentration and manifold effect, by performing theoretical and empirical analyses. The results demonstrate that nearest neighbor search (NNS) using three typical distance measurements, Minkowski distance, Chebyshev distance, and cosine distance, becomes meaningless as the dimensionality increases. Meanwhile, the data incorporates more redundant features, and the variance contribution of principal component analysis (PCA) is skewed towards a few dimensions. By interpreting the causes of the curse of dimensionality, we can better understand the limitations of current models and algorithms, and drive to improve the performance of data analysis and machine learning tasks in high-dimensional space.

Reliable and efficient trajectory optimization methods are a fundamental need for autonomous dynamical systems, effectively enabling applications including rocket landing, hypersonic reentry, spacecraft rendezvous, and docking. Within such safety-critical application areas, the complexity of the emerging trajectory optimization problems has motivated the application of AI-based techniques to enhance the performance of traditional approaches. However, current AI-based methods either attempt to fully replace traditional control algorithms, thus lacking constraint satisfaction guarantees and incurring in expensive simulation, or aim to solely imitate the behavior of traditional methods via supervised learning. To address these limitations, this paper proposes the Autonomous Rendezvous Transformer (ART) and assesses the capability of modern generative models to solve complex trajectory optimization problems, both from a forecasting and control standpoint. Specifically, this work assesses the capabilities of Transformers to (i) learn near-optimal policies from previously collected data, and (ii) warm-start a sequential optimizer for the solution of non-convex optimal control problems, thus guaranteeing hard constraint satisfaction. From a forecasting perspective, results highlight how ART outperforms other learning-based architectures at predicting known fuel-optimal trajectories. From a control perspective, empirical analyses show how policies learned through Transformers are able to generate near-optimal warm-starts, achieving trajectories that are (i) more fuel-efficient, (ii) obtained in fewer sequential optimizer iterations, and (iii) computed with an overall runtime comparable to benchmarks based on convex optimization.

Language similarities can be caused by genetic relatedness, areal contact, universality, or chance. Colexification, i.e. a type of similarity where a single lexical form is used to convey multiple meanings, is underexplored. In our work, we shed light on the linguistic causes of cross-lingual similarity in colexification and phonology, by exploring genealogical stability (persistence) and contact-induced change (diffusibility). We construct large-scale graphs incorporating semantic, genealogical, phonological and geographical data for 1,966 languages. We then show the potential of this resource, by investigating several established hypotheses from previous work in linguistics, while proposing new ones. Our results strongly support a previously established hypothesis in the linguistic literature, while offering contradicting evidence to another. Our large scale resource opens for further research across disciplines, e.g.~in multilingual NLP and comparative linguistics.

Sparse graphs are ubiquitous in real and virtual worlds. With the phenomenal growth in semi-structured and unstructured data, sizes of the underlying graphs have witnessed a rapid growth over the years. Analyzing such large structures necessitates parallel processing, which is challenged by the intrinsic irregularity of sparse computation, memory access, and communication. It would be ideal if programmers and domain-experts get to focus only on the sequential computation and a compiler takes care of auto-generating the parallel code. On the other side, there is a variety in the number of target hardware devices, and achieving optimal performance often demands coding in specific languages or frameworks. Our goal in this work is to focus on a graph DSL which allows the domain-experts to write almost-sequential code, and generate parallel code for different accelerators from the same algorithmic specification. In particular, we illustrate code generation from the StarPlat graph DSL for NVIDIA, AMD, and Intel GPUs using CUDA, OpenCL, SYCL, and OpenACC programming languages. Using a suite of ten large graphs and four popular algorithms, we present the efficacy of StarPlat's versatile code generator.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

Knowledge graphs represent factual knowledge about the world as relationships between concepts and are critical for intelligent decision making in enterprise applications. New knowledge is inferred from the existing facts in the knowledge graphs by encoding the concepts and relations into low-dimensional feature vector representations. The most effective representations for this task, called Knowledge Graph Embeddings (KGE), are learned through neural network architectures. Due to their impressive predictive performance, they are increasingly used in high-impact domains like healthcare, finance and education. However, are the black-box KGE models adversarially robust for use in domains with high stakes? This thesis argues that state-of-the-art KGE models are vulnerable to data poisoning attacks, that is, their predictive performance can be degraded by systematically crafted perturbations to the training knowledge graph. To support this argument, two novel data poisoning attacks are proposed that craft input deletions or additions at training time to subvert the learned model's performance at inference time. These adversarial attacks target the task of predicting the missing facts in knowledge graphs using KGE models, and the evaluation shows that the simpler attacks are competitive with or outperform the computationally expensive ones. The thesis contributions not only highlight and provide an opportunity to fix the security vulnerabilities of KGE models, but also help to understand the black-box predictive behaviour of KGE models.

北京阿比特科技有限公司