Image-based precision medicine aims to personalize treatment decisions based on an individual's unique imaging features so as to improve their clinical outcome. Machine learning frameworks that integrate uncertainty estimation as part of their treatment recommendations would be safer and more reliable. However, little work has been done in adapting uncertainty estimation techniques and validation metrics for precision medicine. In this paper, we use Bayesian deep learning for estimating the posterior distribution over factual and counterfactual outcomes on several treatments. This allows for estimating the uncertainty for each treatment option and for the individual treatment effects (ITE) between any two treatments. We train and evaluate this model to predict future new and enlarging T2 lesion counts on a large, multi-center dataset of MR brain images of patients with multiple sclerosis, exposed to several treatments during randomized controlled trials. We evaluate the correlation of the uncertainty estimate with the factual error, and, given the lack of ground truth counterfactual outcomes, demonstrate how uncertainty for the ITE prediction relates to bounds on the ITE error. Lastly, we demonstrate how knowledge of uncertainty could modify clinical decision-making to improve individual patient and clinical trial outcomes.
An individualized treatment rule (ITR) is a decision rule that aims to improve individual patients health outcomes by recommending optimal treatments according to patients specific information. In observational studies, collected data may contain many variables that are irrelevant for making treatment decisions. Including all available variables in the statistical model for the ITR could yield a loss of efficiency and an unnecessarily complicated treatment rule, which is difficult for physicians to interpret or implement. Thus, a data-driven approach to select important tailoring variables with the aim of improving the estimated decision rules is crucial. While there is a growing body of literature on selecting variables in ITRs with continuous outcomes, relatively few methods exist for discrete outcomes, which pose additional computational challenges even in the absence of variable selection. In this paper, we propose a variable selection method for ITRs with discrete outcomes. We show theoretically and empirically that our approach has the double robustness property, and that it compares favorably with other competing approaches. We illustrate the proposed method on data from a study of an adaptive web-based stress management tool to identify which variables are relevant for tailoring treatment.
Clinical predictive models often rely on patients' electronic health records (EHR), but integrating medical knowledge to enhance predictions and decision-making is challenging. This is because personalized predictions require personalized knowledge graphs (KGs), which are difficult to generate from patient EHR data. To address this, we propose \textsc{GraphCare}, an open-world framework that uses external KGs to improve EHR-based predictions. Our method extracts knowledge from large language models (LLMs) and external biomedical KGs to build patient-specific KGs, which are then used to train our proposed Bi-attention AugmenTed (BAT) graph neural network (GNN) for healthcare predictions. On two public datasets, MIMIC-III and MIMIC-IV, \textsc{GraphCare} surpasses baselines in four vital healthcare prediction tasks: mortality, readmission, length of stay (LOS), and drug recommendation. On MIMIC-III, it boosts AUROC by 17.6\% and 6.6\% for mortality and readmission, and F1-score by 7.9\% and 10.8\% for LOS and drug recommendation, respectively. Notably, \textsc{GraphCare} demonstrates a substantial edge in scenarios with limited data availability. Our findings highlight the potential of using external KGs in healthcare prediction tasks and demonstrate the promise of \textsc{GraphCare} in generating personalized KGs for promoting personalized medicine.
Many individuals are likely to face a legal dispute at some point in their lives, but their lack of understanding of how to navigate these complex issues often renders them vulnerable. The advancement of natural language processing opens new avenues for bridging this legal literacy gap through the development of automated legal aid systems. However, existing legal question answering (LQA) approaches often suffer from a narrow scope, being either confined to specific legal domains or limited to brief, uninformative responses. In this work, we propose an end-to-end methodology designed to generate long-form answers to any statutory law questions, utilizing a "retrieve-then-read" pipeline. To support this approach, we introduce and release the Long-form Legal Question Answering (LLeQA) dataset, comprising 1,868 expert-annotated legal questions in the French language, complete with detailed answers rooted in pertinent legal provisions. Our experimental results demonstrate promising performance on automatic evaluation metrics, but a qualitative analysis uncovers areas for refinement. As one of the only comprehensive, expert-annotated long-form LQA dataset, LLeQA has the potential to not only accelerate research towards resolving a significant real-world issue, but also act as a rigorous benchmark for evaluating NLP models in specialized domains. We publicly release our code, data, and models.
Real-life applications of deep neural networks are hindered by their unsteady predictions when faced with noisy inputs and adversarial attacks. The certified radius is in this context a crucial indicator of the robustness of models. However how to design an efficient classifier with a sufficient certified radius? Randomized smoothing provides a promising framework by relying on noise injection in inputs to obtain a smoothed and more robust classifier. In this paper, we first show that the variance introduced by randomized smoothing closely interacts with two other important properties of the classifier, i.e. its Lipschitz constant and margin. More precisely, our work emphasizes the dual impact of the Lipschitz constant of the base classifier, on both the smoothed classifier and the empirical variance. Moreover, to increase the certified robust radius, we introduce a different simplex projection technique for the base classifier to leverage the variance-margin trade-off thanks to Bernstein's concentration inequality, along with an enhanced Lipschitz bound. Experimental results show a significant improvement in certified accuracy compared to current state-of-the-art methods. Our novel certification procedure allows us to use pre-trained models that are used with randomized smoothing, effectively improving the current certification radius in a zero-shot manner.
In an era where scientific experimentation is often costly, multi-fidelity emulation provides a powerful tool for predictive scientific computing. While there has been notable work on multi-fidelity modeling, existing models do not incorporate an important "conglomerate" property of multi-fidelity simulators, where the accuracies of different simulator components are controlled by different fidelity parameters. Such conglomerate simulators are widely encountered in complex nuclear physics and astrophysics applications. We thus propose a new CONglomerate multi-FIdelity Gaussian process (CONFIG) model, which embeds this conglomerate structure within a novel non-stationary covariance function. We show that the proposed CONFIG model can capture prior knowledge on the numerical convergence of conglomerate simulators, which allows for cost-efficient emulation of multi-fidelity systems. We demonstrate the improved predictive performance of CONFIG over state-of-the-art models in a suite of numerical experiments and two applications, the first for emulation of cantilever beam deflection and the second for emulating the evolution of the quark-gluon plasma, which was theorized to have filled the Universe shortly after the Big Bang.
We propose two novel approaches to address a critical problem of reach measurement across multiple media -- how to estimate the reach of an unobserved subset of buying groups (BGs) based on the observed reach of other subsets of BGs. Specifically, we propose a model-free approach and a model-based approach. The former provides a coarse estimate for the reach of any subset by leveraging the consistency among the reach of different subsets. Linear programming is used to capture the constraints of the reach consistency. This produces an upper and a lower bound for the reach of any subset. The latter provides a point estimate for the reach of any subset. The key idea behind the latter is to exploit the conditional independence model. In particular, the groups of the model are created by assuming each BG has either high or low reach probability in a group, and the weights of each group are determined through solving a non-negative least squares (NNLS) problem. In addition, we also provide a framework to give both confidence interval and point estimates by integrating these two approaches with training points selection and parameter fine-tuning through cross-validation. Finally, we evaluate the two approaches through experiments on synthetic data.
The Bayesian Cram\'er-Rao bound (CRB) provides a lower bound on the error of any Bayesian estimator under mild regularity conditions. It can be used to benchmark the performance of estimators, and provides a principled design metric for guiding system design and optimization. However, the Bayesian CRB depends on the prior distribution, which is often unknown for many problems of interest. This work develops a new data-driven estimator for the Bayesian CRB using score matching, a statistical estimation technique, to model the prior distribution. The performance of the estimator is analyzed in both the classical parametric modeling regime and the neural network modeling regime. In both settings, we develop novel non-asymptotic bounds on the score matching error and our Bayesian CRB estimator. Our proofs build on results from empirical process theory, including classical bounds and recently introduced techniques for characterizing neural networks, to address the challenges of bounding the score matching error. The performance of the estimator is illustrated empirically on a denoising problem example with a Gaussian mixture prior.
Artificial intelligence (AI) algorithms based on neural networks have been designed for decades with the goal of maximising some measure of accuracy. This has led to two undesired effects. First, model complexity has risen exponentially when measured in terms of computation and memory requirements. Second, state-of-the-art AI models are largely incapable of providing trustworthy measures of their uncertainty, possibly `hallucinating' their answers and discouraging their adoption for decision-making in sensitive applications. With the goal of realising efficient and trustworthy AI, in this paper we highlight research directions at the intersection of hardware and software design that integrate physical insights into computational substrates, neuroscientific principles concerning efficient information processing, information-theoretic results on optimal uncertainty quantification, and communication-theoretic guidelines for distributed processing. Overall, the paper advocates for novel design methodologies that target not only accuracy but also uncertainty quantification, while leveraging emerging computing hardware architectures that move beyond the traditional von Neumann digital computing paradigm to embrace in-memory, neuromorphic, and quantum computing technologies. An important overarching principle of the proposed approach is to view the stochasticity inherent in the computational substrate and in the communication channels between processors as a resource to be leveraged for the purpose of representing and processing classical and quantum uncertainty.
Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.
Human doctors with well-structured medical knowledge can diagnose a disease merely via a few conversations with patients about symptoms. In contrast, existing knowledge-grounded dialogue systems often require a large number of dialogue instances to learn as they fail to capture the correlations between different diseases and neglect the diagnostic experience shared among them. To address this issue, we propose a more natural and practical paradigm, i.e., low-resource medical dialogue generation, which can transfer the diagnostic experience from source diseases to target ones with a handful of data for adaptation. It is capitalized on a commonsense knowledge graph to characterize the prior disease-symptom relations. Besides, we develop a Graph-Evolving Meta-Learning (GEML) framework that learns to evolve the commonsense graph for reasoning disease-symptom correlations in a new disease, which effectively alleviates the needs of a large number of dialogues. More importantly, by dynamically evolving disease-symptom graphs, GEML also well addresses the real-world challenges that the disease-symptom correlations of each disease may vary or evolve along with more diagnostic cases. Extensive experiment results on the CMDD dataset and our newly-collected Chunyu dataset testify the superiority of our approach over state-of-the-art approaches. Besides, our GEML can generate an enriched dialogue-sensitive knowledge graph in an online manner, which could benefit other tasks grounded on knowledge graph.