Semantic segmentation is a common task in autonomous driving to understand the surrounding environment. Driveable Area Segmentation and Lane Detection are particularly important for safe and efficient navigation on the road. However, original semantic segmentation models are computationally expensive and require high-end hardware, which is not feasible for embedded systems in autonomous vehicles. This paper proposes a lightweight model for the driveable area and lane line segmentation. TwinLiteNet is designed cheaply but achieves accurate and efficient segmentation results. We evaluate TwinLiteNet on the BDD100K dataset and compare it with modern models. Experimental results show that our TwinLiteNet performs similarly to existing approaches, requiring significantly fewer computational resources. Specifically, TwinLiteNet achieves a mIoU score of 91.3% for the Drivable Area task and 31.08% IoU for the Lane Detection task with only 0.4 million parameters and achieves 415 FPS on GPU RTX A5000. Furthermore, TwinLiteNet can run in real-time on embedded devices with limited computing power, especially since it achieves 60FPS on Jetson Xavier NX, making it an ideal solution for self-driving vehicles. Code is available: url{//github.com/chequanghuy/TwinLiteNet}.
Adapting the Diffusion Probabilistic Model (DPM) for direct image super-resolution is wasteful, given that a simple Convolutional Neural Network (CNN) can recover the main low-frequency content. Therefore, we present ResDiff, a novel Diffusion Probabilistic Model based on Residual structure for Single Image Super-Resolution (SISR). ResDiff utilizes a combination of a CNN, which restores primary low-frequency components, and a DPM, which predicts the residual between the ground-truth image and the CNN predicted image. In contrast to the common diffusion-based methods that directly use LR images to guide the noise towards HR space, ResDiff utilizes the CNN's initial prediction to direct the noise towards the residual space between HR space and CNN-predicted space, which not only accelerates the generation process but also acquires superior sample quality. Additionally, a frequency-domain-based loss function for CNN is introduced to facilitate its restoration, and a frequency-domain guided diffusion is designed for DPM on behalf of predicting high-frequency details. The extensive experiments on multiple benchmark datasets demonstrate that ResDiff outperforms previous diffusion based methods in terms of shorter model convergence time, superior generation quality, and more diverse samples.
In the high-stakes realm of healthcare, ensuring fairness in predictive models is crucial. Electronic Health Records (EHRs) have become integral to medical decision-making, yet existing methods for enhancing model fairness restrict themselves to unimodal data and fail to address the multifaceted social biases intertwined with demographic factors in EHRs. To mitigate these biases, we present FairEHR-CLP: a general framework for Fairness-aware Clinical Predictions with Contrastive Learning in EHRs. FairEHR-CLP operates through a two-stage process, utilizing patient demographics, longitudinal data, and clinical notes. First, synthetic counterparts are generated for each patient, allowing for diverse demographic identities while preserving essential health information. Second, fairness-aware predictions employ contrastive learning to align patient representations across sensitive attributes, jointly optimized with an MLP classifier with a softmax layer for clinical classification tasks. Acknowledging the unique challenges in EHRs, such as varying group sizes and class imbalance, we introduce a novel fairness metric to effectively measure error rate disparities across subgroups. Extensive experiments on three diverse EHR datasets on three tasks demonstrate the effectiveness of FairEHR-CLP in terms of fairness and utility compared with competitive baselines. FairEHR-CLP represents an advancement towards ensuring both accuracy and equity in predictive healthcare models.
In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for acquiring patents, yet past automation and AI research have scarcely addressed this aspect. To address this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model Enhanced PARIS (LE-PARIS). These systems are designed to expedite the efficiency of patent attorneys in collaboratively handling OA responses. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. Our validation involves a multi-paradigmatic analysis using the USPTO Office Action database and longitudinal data of attorney interactions with our systems over six years. Through five studies, we examine the constructiveness of OA topics (studies 1 and 2) using topic modeling and the proposed Delphi process, the efficacy of our proposed hybrid recommender system tailored for OA (both LLM-based and non-LLM-based) (study 3), the quality of response generation (study 4), and the practical value of the systems in real-world scenarios via user studies (study 5). Results demonstrate that both PARIS and LE-PARIS significantly meet key metrics and positively impact attorney performance.
We introduce AlphaRank, an artificial intelligence approach to address the fixed-budget ranking and selection (R&S) problems. We formulate the sequential sampling decision as a Markov decision process and propose a Monte Carlo simulation-based rollout policy that utilizes classic R&S procedures as base policies for efficiently learning the value function of stochastic dynamic programming. We accelerate online sample-allocation by using deep reinforcement learning to pre-train a neural network model offline based on a given prior. We also propose a parallelizable computing framework for large-scale problems, effectively combining "divide and conquer" and "recursion" for enhanced scalability and efficiency. Numerical experiments demonstrate that the performance of AlphaRank is significantly improved over the base policies, which could be attributed to AlphaRank's superior capability on the trade-off among mean, variance, and induced correlation overlooked by many existing policies.
Recently emerged prompt-based Recommendation Language Models (RLM) can solve multiple recommendation tasks uniformly. The RLMs make full use of the inherited knowledge learned from the abundant pre-training data to solve the downstream recommendation tasks by prompts, without introducing additional parameters or network training. However, handcrafted prompts require significant expertise and human effort since slightly rewriting prompts may cause massive performance changes. In this paper, we propose PAP-REC, a framework to generate the Personalized Automatic Prompt for RECommendation language models to mitigate the inefficiency and ineffectiveness problems derived from manually designed prompts. Specifically, personalized automatic prompts allow different users to have different prompt tokens for the same task, automatically generated using a gradient-based method. One challenge for personalized automatic prompt generation for recommendation language models is the extremely large search space, leading to a long convergence time. To effectively and efficiently address the problem, we develop surrogate metrics and leverage an alternative updating schedule for prompting recommendation language models. Experimental results show that our PAP-REC framework manages to generate personalized prompts, and the automatically generated prompts outperform manually constructed prompts and also outperform various baseline recommendation models. The source code of the work is available at //github.com/rutgerswiselab/PAP-REC.
Over the past years, Machine Learning-as-a-Service (MLaaS) has received a surging demand for supporting Machine Learning-driven services to offer revolutionized user experience across diverse application areas. MLaaS provides inference service with low inference latency based on an ML model trained using a dataset collected from numerous individual data owners. Recently, for the sake of data owners' privacy and to comply with the "right to be forgotten (RTBF)" as enacted by data protection legislation, many machine unlearning methods have been proposed to remove data owners' data from trained models upon their unlearning requests. However, despite their promising efficiency, almost all existing machine unlearning methods handle unlearning requests independently from inference requests, which unfortunately introduces a new security issue of inference service obsolescence and a privacy vulnerability of undesirable exposure for machine unlearning in MLaaS. In this paper, we propose the ERASER framework for machinE unleaRning in MLaAS via an inferencE seRving-aware approach. ERASER strategically choose appropriate unlearning execution timing to address the inference service obsolescence issue. A novel inference consistency certification mechanism is proposed to avoid the violation of RTBF principle caused by postponed unlearning executions, thereby mitigating the undesirable exposure vulnerability. ERASER offers three groups of design choices to allow for tailor-made variants that best suit the specific environments and preferences of various MLaaS systems. Extensive empirical evaluations across various settings confirm ERASER's effectiveness, e.g., it can effectively save up to 99% of inference latency and 31% of computation overhead over the inference-oblivion baseline.
Large Language Models (LLMs) have the potential to fundamentally change the way people engage in computer programming. Agent-based modeling (ABM) has become ubiquitous in natural and social sciences and education, yet no prior studies have explored the potential of LLMs to assist it. We designed NetLogo Chat to support the learning and practice of NetLogo, a programming language for ABM. To understand how users perceive, use, and need LLM-based interfaces, we interviewed 30 participants from global academia, industry, and graduate schools. Experts reported more perceived benefits than novices and were more inclined to adopt LLMs in their workflow. We found significant differences between experts and novices in their perceptions, behaviors, and needs for human-AI collaboration. We surfaced a knowledge gap between experts and novices as a possible reason for the benefit gap. We identified guidance, personalization, and integration as major needs for LLM-based interfaces to support the programming of ABM.
To navigate reliably in indoor environments, an industrial autonomous vehicle must know its position. However, current indoor vehicle positioning technologies either lack accuracy, usability or are too expensive. Thus, we propose a novel concept called local reference point assisted active radar positioning, which is able to overcome these drawbacks. It is based on distributing passive retroreflectors in the indoor environment such that each position of the vehicle can be identified by a unique reflection characteristic regarding the reflectors. To observe these characteristics, the autonomous vehicle is equipped with an active radar system. On one hand, this paper presents the basic idea and concept of our new approach towards indoor vehicle positioning and especially focuses on the crucial placement of the reflectors. On the other hand, it also provides a proof of concept by conducting a full system simulation including the placement of the local reference points, the radar-based distance estimation and the comparison of two different positioning methods. It successfully demonstrates the feasibility of our proposed approach.
The Segment Anything Model (SAM) has shown impressive performance when applied to natural image segmentation. However, it struggles with geographical images like aerial and satellite imagery, especially when segmenting mobility infrastructure including roads, sidewalks, and crosswalks. This inferior performance stems from the narrow features of these objects, their textures blending into the surroundings, and interference from objects like trees, buildings, vehicles, and pedestrians - all of which can disorient the model to produce inaccurate segmentation maps. To address these challenges, we propose Geographical SAM (GeoSAM), a novel SAM-based framework that implements a fine-tuning strategy using the dense visual prompt from zero-shot learning, and the sparse visual prompt from a pre-trained CNN segmentation model. The proposed GeoSAM outperforms existing approaches for geographical image segmentation, specifically by 26%, 7%, and 17% for road infrastructure, pedestrian infrastructure, and on average, respectively, representing a momentous leap in leveraging foundation models to segment mobility infrastructure including both road and pedestrian infrastructure in geographical images. The source code can be found on this GitHub repository: //github.com/rafiibnsultan/GeoSAM/tree/main.
Large Language Models have emerged as prime candidates to tackle misinformation mitigation. However, existing approaches struggle with hallucinations and overconfident predictions. We propose an uncertainty quantification framework that leverages both direct confidence elicitation and sampled-based consistency methods to provide better calibration for NLP misinformation mitigation solutions. We first investigate the calibration of sample-based consistency methods that exploit distinct features of consistency across sample sizes and stochastic levels. Next, we evaluate the performance and distributional shift of a robust numeric verbalization prompt across single vs. two-step confidence elicitation procedure. We also compare the performance of the same prompt with different versions of GPT and different numerical scales. Finally, we combine the sample-based consistency and verbalized methods to propose a hybrid framework that yields a better uncertainty estimation for GPT models. Overall, our work proposes novel uncertainty quantification methods that will improve the reliability of Large Language Models in misinformation mitigation applications.