亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multiple-input multiple-output (MIMO) system has been the defining mobile communications technology in recent generations. With the ever-increasing demands looming towards the sixth generation (6G), we are in need of additional degrees of freedom that deliver further gains beyond MIMO. To this goal, fluid antenna system (FAS) has emerged as a new way to obtain spatial diversity using reconfigurable position-switchable antennas. Considering the case with more than one ports activated on a 2D fluid antenna surface at both ends, we take the information-theoretic approach to study the achievable performance limits of the MIMO-FAS. First of all, we propose a suboptimal scheme, referred to as QR MIMO-FAS, to maximize the rate at high signal-to-noise ratio (SNR) via joint port selection, transmit and receive beamforming and power allocation. We then derive the optimal diversity and multiplexing tradeoff (DMT) of MIMO-FAS. From the DMT, we highlight that MIMO-FAS outperforms traditional MIMO antenna systems. Further, we introduce a new metric, namely q-outage capacity, which can jointly consider rate and outage probability. Through this metric, our results indicate that MIMO-FAS surpasses traditional MIMO greatly.

相關內容

As automation technologies advance, the need for compact and multi-modal sensors in robotic applications is growing. To address this demand, we introduce CompdVision, a novel sensor that combines near-field 3D visual and tactile sensing. This sensor, with dimensions of 22$\times$14$\times$14 mm, leverages the compound eye imaging system to achieve a compact form factor without compromising its dual modalities. CompdVision utilizes two types of vision units to meet diverse sensing requirements. Stereo units with far-focus lenses can see through the transparent elastomer, facilitating depth estimation beyond the contact surface, while tactile units with near-focus lenses track the movement of markers embedded in the elastomer to obtain contact deformation. Experimental results validate the sensor's superior performance in 3D visual and tactile sensing. The sensor demonstrates effective depth estimation within a 70mm range from its surface. Additionally, it registers high accuracy in tangential and normal force measurements. The dual modalities and compact design make the sensor a versatile tool for complex robotic tasks.

Multiplicative Programming (MP) pertains to a spectrum of optimization problems that involve product term(s). As computational paradigms of communication systems continue to evolve, particularly concerning the offloading strategies of computationally intensive tasks simultaneously to centralized or decentralized servers, designing or optimizing effective communication systems with MP techniques becomes increasingly indispensable. Similarly, Fractional Programming (FP) is another significant branch in the optimization domain, addressing various essential scenarios in communication. For instance, in minimization optimization problems, transmission power and processing delay of communication systems are considered critical metrics. In a very recent JSAC paper by Zhao et al. [2], an innovative transform (Zhao's Optimization Transform) was proposed for solving the minimization of MP and FP problems. Nevertheless, the resolution of optimization problems in communication systems encounters several limitations when adopting Zhao's optimization transform, especially in MP problems. Primarily, objective functions proposed in these optimization problems typically involve sum-of-products terms and the optimization variables are always discrete leading to NP-hard problems. Furthermore, multiple functions mapping to the non-negative domain in these scenarios can result in auxiliary variables being zero values, while the same situation is avoidable in FP problems due to the presence of these functions in the denominator. In this paper, we introduce an updated transform, building on the foundations of Zhao's original method, designed to effectively overcome these challenges by reformulating the original problem into a series of convex or concave problems. This introduced problem reformulation provides a superior iteration algorithm with demonstrable convergence to a stationary point.

Recently, computers have diversified architectures. To achieve high numerical calculation software performance, it is necessary to tune the software according to the target computer architecture. However, code optimization for each environment is difficult unless it is performed by a specialist who knows computer architectures well. By applying autotuning (AT), the tuning effort can be reduced. Optimized implementation by AT that enhances computer performance can be used even by non-experts. In this research, we propose a technique for AT for programs using open multi-processing (OpenMP). We propose an AT method using an AT language that changes the OpenMP optimized loop and dynamically changes the number of threads in OpenMP according to computational kernels. Performance evaluation was performed using the Fujitsu PRIMEHPC FX100, which is a K-computer type supercomputer installed at the Information Technology Center, Nagoya University. As a result, we found there was a performance increase of 1.801 times that of the original code in a plasma turbulence analysis.

Collaborative edge computing (CEC) is an emerging paradigm for heterogeneous devices to collaborate on edge computation jobs. For congestible links and computing units, delay-optimal forwarding and offloading for service chain tasks (e.g., DNN with vertical split) in CEC remains an open problem. In this paper, we formulate the service chain forwarding and offloading in CEC with arbitrary topology and heterogeneous transmission/computation capability, and aim to minimize the network aggregated cost. We consider congestion-aware nonlinear cost functions that cover various performance metrics and constraints, such as average queueing delay with limited processor capacity. We solve the non-convex optimization problem globally by analyzing the KKT condition and proposing a sufficiency optimality condition. We propose a polynomial-time distributed algorithm that converges to the global optimum. The algorithm adapts to changes in input rates and network topology, and can be implemented as an online algorithm. Numerical evaluation shows that our method significantly outperforms baselines in multiple network instances, especially in congested scenarios.

The recent proliferation of computers and the internet have opened new opportunities for collecting and processing data. However, such data are often obtained without a well-planned probability survey design. Such non-probability based samples cannot be automatically regarded as representative of the population of interest. Several classes of methods for estimation and inferences from non-probability samples have been developed in recent years. The quasi-randomization methods assume that non-probability sample selection is governed by an underlying latent random mechanism. The basic idea is to use information collected from a probability ("reference") sample to uncover latent non-probability survey participation probabilities (also known as "propensity scores") and use them in estimation of target finite population parameters. In this paper, we review and compare theoretical properties of recently developed methods of estimation survey participation probabilities and study their relative performances in simulations.

Task-Oriented Dialogue (TOD) systems have become crucial components in interactive artificial intelligence applications. While recent advances have capitalized on pre-trained language models (PLMs), they exhibit limitations regarding transparency and controllability. To address these challenges, we propose a novel approach focusing on inferring the TOD-Flow graph from dialogue data annotated with dialog acts, uncovering the underlying task structure in the form of a graph. The inferred TOD-Flow graph can be easily integrated with any dialogue model to improve its prediction performance, transparency, and controllability. Our TOD-Flow graph learns what a model can, should, and should not predict, effectively reducing the search space and providing a rationale for the model's prediction. We show that the proposed TOD-Flow graph better resembles human-annotated graphs compared to prior approaches. Furthermore, when combined with several dialogue policies and end-to-end dialogue models, we demonstrate that our approach significantly improves dialog act classification and end-to-end response generation performance in the MultiWOZ and SGD benchmarks. Code available at: //github.com/srsohn/TOD-Flow

Temporal data, notably time series and spatio-temporal data, are prevalent in real-world applications. They capture dynamic system measurements and are produced in vast quantities by both physical and virtual sensors. Analyzing these data types is vital to harnessing the rich information they encompass and thus benefits a wide range of downstream tasks. Recent advances in large language and other foundational models have spurred increased use of these models in time series and spatio-temporal data mining. Such methodologies not only enable enhanced pattern recognition and reasoning across diverse domains but also lay the groundwork for artificial general intelligence capable of comprehending and processing common temporal data. In this survey, we offer a comprehensive and up-to-date review of large models tailored (or adapted) for time series and spatio-temporal data, spanning four key facets: data types, model categories, model scopes, and application areas/tasks. Our objective is to equip practitioners with the knowledge to develop applications and further research in this underexplored domain. We primarily categorize the existing literature into two major clusters: large models for time series analysis (LM4TS) and spatio-temporal data mining (LM4STD). On this basis, we further classify research based on model scopes (i.e., general vs. domain-specific) and application areas/tasks. We also provide a comprehensive collection of pertinent resources, including datasets, model assets, and useful tools, categorized by mainstream applications. This survey coalesces the latest strides in large model-centric research on time series and spatio-temporal data, underscoring the solid foundations, current advances, practical applications, abundant resources, and future research opportunities.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Graph convolution networks (GCN) are increasingly popular in many applications, yet remain notoriously hard to train over large graph datasets. They need to compute node representations recursively from their neighbors. Current GCN training algorithms suffer from either high computational costs that grow exponentially with the number of layers, or high memory usage for loading the entire graph and node embeddings. In this paper, we propose a novel efficient layer-wise training framework for GCN (L-GCN), that disentangles feature aggregation and feature transformation during training, hence greatly reducing time and memory complexities. We present theoretical analysis for L-GCN under the graph isomorphism framework, that L-GCN leads to as powerful GCNs as the more costly conventional training algorithm does, under mild conditions. We further propose L^2-GCN, which learns a controller for each layer that can automatically adjust the training epochs per layer in L-GCN. Experiments show that L-GCN is faster than state-of-the-arts by at least an order of magnitude, with a consistent of memory usage not dependent on dataset size, while maintaining comparable prediction performance. With the learned controller, L^2-GCN can further cut the training time in half. Our codes are available at //github.com/Shen-Lab/L2-GCN.

北京阿比特科技有限公司