Computer vision (CV), a non-intrusive and cost-effective technology, has furthered the development of precision livestock farming by enabling optimized decision-making through timely and individualized animal care. The availability of affordable two- and three-dimensional camera sensors, combined with various machine learning and deep learning algorithms, has provided a valuable opportunity to improve livestock production systems. However, despite the availability of various CV tools in the public domain, applying these tools to animal data can be challenging, often requiring users to have programming and data analysis skills, as well as access to computing resources. Moreover, the rapid expansion of precision livestock farming is creating a growing need to educate and train animal science students in CV. This presents educators with the challenge of efficiently demonstrating the complex algorithms involved in CV. Thus, the objective of this study was to develop ShinyAnimalCV, an open-source cloud-based web application. This application provides a user-friendly interface for performing CV tasks, including object segmentation, detection, three-dimensional surface visualization, and extraction of two- and three-dimensional morphological features. Nine pre-trained CV models using top-view animal data are included in the application. ShinyAnimalCV has been deployed online using cloud computing platforms. The source code of ShinyAnimalCV is available on GitHub, along with detailed documentation on training CV models using custom data and deploying ShinyAnimalCV locally to allow users to fully leverage the capabilities of the application. ShinyAnimalCV can contribute to CV research and teaching in the animal science community.
Quantum neural networks (QNNs) and quantum kernels stand as prominent figures in the realm of quantum machine learning, poised to leverage the nascent capabilities of near-term quantum computers to surmount classical machine learning challenges. Nonetheless, the training efficiency challenge poses a limitation on both QNNs and quantum kernels, curbing their efficacy when applied to extensive datasets. To confront this concern, we present a unified approach: coreset selection, aimed at expediting the training of QNNs and quantum kernels by distilling a judicious subset from the original training dataset. Furthermore, we analyze the generalization error bounds of QNNs and quantum kernels when trained on such coresets, unveiling the comparable performance with those training on the complete original dataset. Through systematic numerical simulations, we illuminate the potential of coreset selection in expediting tasks encompassing synthetic data classification, identification of quantum correlations, and quantum compiling. Our work offers a useful way to improve diverse quantum machine learning models with a theoretical guarantee while reducing the training cost.
In real-world scenarios like traffic and energy, massive time-series data with missing values and noises are widely observed, even sampled irregularly. While many imputation methods have been proposed, most of them work with a local horizon, which means models are trained by splitting the long sequence into batches of fit-sized patches. This local horizon can make models ignore global trends or periodic patterns. More importantly, almost all methods assume the observations are sampled at regular time stamps, and fail to handle complex irregular sampled time series arising from different applications. Thirdly, most existing methods are learned in an offline manner. Thus, it is not suitable for many applications with fast-arriving streaming data. To overcome these limitations, we propose BayOTIDE: Bayesian Online Multivariate Time series Imputation with functional decomposition. We treat the multivariate time series as the weighted combination of groups of low-rank temporal factors with different patterns. We apply a group of Gaussian Processes (GPs) with different kernels as functional priors to fit the factors. For computational efficiency, we further convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE), and developing a scalable algorithm for online inference. The proposed method can not only handle imputation over arbitrary time stamps, but also offer uncertainty quantification and interpretability for the downstream application. We evaluate our method on both synthetic and real-world datasets.
Data assimilation is crucial in a wide range of applications, but it often faces challenges such as high computational costs due to data dimensionality and incomplete understanding of underlying mechanisms. To address these challenges, this study presents a novel assimilation framework, termed Latent Assimilation with Implicit Neural Representations (LAINR). By introducing Spherical Implicit Neural Representations (SINR) along with a data-driven uncertainty estimator of the trained neural networks, LAINR enhances efficiency in assimilation process. Experimental results indicate that LAINR holds certain advantage over existing methods based on AutoEncoders, both in terms of accuracy and efficiency.
The possibility of dynamically modifying the computational load of neural models at inference time is crucial for on-device processing, where computational power is limited and time-varying. Established approaches for neural model compression exist, but they provide architecturally static models. In this paper, we investigate the use of early-exit architectures, that rely on intermediate exit branches, applied to large-vocabulary speech recognition. This allows for the development of dynamic models that adjust their computational cost to the available resources and recognition performance. Unlike previous works, besides using pre-trained backbones we also train the model from scratch with an early-exit architecture. Experiments on public datasets show that early-exit architectures from scratch not only preserve performance levels when using fewer encoder layers, but also improve task accuracy as compared to using single-exit models or using pre-trained models. Additionally, we investigate an exit selection strategy based on posterior probabilities as an alternative to frame-based entropy.
We propose, analyze and realize a variational multiclass segmentation scheme that partitions a given image into multiple regions exhibiting specific properties. Our method determines multiple functions that encode the segmentation regions by minimizing an energy functional combining information from different channels. Multichannel image data can be obtained by lifting the image into a higher dimensional feature space using specific multichannel filtering or may already be provided by the imaging modality under consideration, such as an RGB image or multimodal medical data. Experimental results show that the proposed method performs well in various scenarios. In particular, promising results are presented for two medical applications involving classification of brain abscess and tumor growth, respectively. As main theoretical contributions, we prove the existence of global minimizers of the proposed energy functional and show its stability and convergence with respect to noisy inputs. In particular, these results also apply to the special case of binary segmentation, and these results are also novel in this particular situation.
We introduce the Julia package Groebner.jl for computing Gr\"obner bases with the F4 algorithm. Groebner.jl is an efficient, lightweight, portable, thoroughly tested, and documented open-source software. The package works over integers modulo a prime and over the rationals and supports various monomial orderings. The implementation incorporates modern symbolic computation techniques and leverages the Julia type system and tooling, which allows Groebner.jl to be on par in performance with the leading computer algebra systems. Our package is freely available at //github.com/sumiya11/Groebner.jl .
Recently, it has been exposed that some modern facial recognition systems could discriminate specific demographic groups and may lead to unfair attention with respect to various facial attributes such as gender and origin. The main reason are the biases inside datasets, unbalanced demographics, used to train theses models. Unfortunately, collecting a large-scale balanced dataset with respect to various demographics is impracticable. In this paper, we investigate as an alternative the generation of a balanced and possibly bias-free synthetic dataset that could be used to train, to regularize or to evaluate deep learning-based facial recognition models. We propose to use a simple method for modeling and sampling a disentangled projection of a StyleGAN latent space to generate any combination of demographic groups (e.g. $hispanic-female$). Our experiments show that we can synthesis any combination of demographic groups effectively and the identities are different from the original training dataset. We also released the source code.
In this paper, we introduce the OpenStreetMap Mobility Demand Generator (OMOD), a new open-source activity-based mobility demand generation tool. OMOD creates a population of agents and detailed daily activity schedules that state what activities each agent plans to conduct, where, and for how long. The temporal aspect of the output is wholly disaggregated, while the spatial aspect is given on the level of individual buildings. In contrast to other existing models, OMOD is freely available, open-source, works out-of-the-box, can be applied to any region on earth, and only requires freely available OpenStreetMap (OSM) data from the user. With OMOD, it is easy for non-experts to create realistic mobility demand, which can be used in transportation studies, energy system modeling, communications system research, et cetera. OMOD uses a data-driven approach to generate mobility demand that has been calibrated with household travel survey data. This paper describes OMOD's architecture and validates the model for three cities ranging from 200,000 to 2.5 million inhabitants.
We present a novel computational model for the dynamics of alveolar recruitment/derecruitment (RD), which reproduces the underlying characteristics typically observed in injured lungs. The basic idea is a pressure- and time-dependent variation of the stress-free reference volume in reduced dimensional viscoelastic elements representing the acinar tissue. We choose a variable reference volume triggered by critical opening and closing pressures in a time-dependent manner from a straightforward mechanical point of view. In the case of (partially and progressively) collapsing alveolar structures, the volume available for expansion during breathing reduces and vice versa, eventually enabling consideration of alveolar collapse and reopening in our model. We further introduce a method for patient-specific determination of the underlying critical parameters of the new alveolar RD dynamics when integrated into the tissue elements, referred to as terminal units, of a spatially resolved physics-based lung model that simulates the human respiratory system in an anatomically correct manner. Relevant patient-specific parameters of the terminal units are herein determined based on medical image data and the macromechanical behavior of the lung during artificial ventilation. We test the whole modeling approach for a real-life scenario by applying it to the clinical data of a mechanically ventilated patient. The generated lung model is capable of reproducing clinical measurements such as tidal volume and pleural pressure during various ventilation maneuvers. We conclude that this new model is an important step toward personalized treatment of ARDS patients by considering potentially harmful mechanisms - such as cyclic RD and overdistension - and might help in the development of relevant protective ventilation strategies to reduce ventilator-induced lung injury (VILI).
We report preliminary results on using the MEMCPU\texttrademark{} Platform to compute the prime factorization of large biprimes. The first approach, the direct model, directly returns the factors of a given biprime. The second approach, the congruence model, returns smooth congruences to address the bottleneck of standard sieve methods. The models have size-dependent structure, and the MEMCPU Platform requires structure-dependent tuning for optimal performance. Therefore, for both models, we tuned the platform on sample problems up to a given size according to available resources. Then we generated RSA-like benchmark biprimes to perform rigorous scaling analysis. The MEMCPU timings over the tuned range followed low degree polynomials in the number of bits, markedly different than other tested methods including general number field sieve. MEMCPU's congruence model was the most promising, which was scaled up to 300-bit factorization problems while following a $2^{nd}$ degree polynomial fit. We also discuss the approach to tuning the MEMCPU Platform for problems beyond the reach of today's most advanced methods. Finally, basic analysis of the acceleration expected from an ASIC implementation is provided and suggests the possibility of real time factorization of large biprimes.