We propose a type of non-cooperative game, termed multi-cluster aggregative game, which is composed of clusters as players, where each cluster consists of collaborative agents with cost functions depending on their own decisions and the aggregate quantity of each participant cluster to modeling large-scale and hierarchical multi-agent systems. This novel game model is motivated by decision-making problems in competitive-cooperative network systems with large-scale nodes, such as the Energy Internet. To address challenges arising in seeking Nash equilibrium for such network systems, we develop an algorithm with a hierarchical communication topology which is a hybrid with distributed and semi-decentralized protocols. The upper level consists of cluster coordinators estimating the aggregate quantities with local communications, while the lower level is cluster subnets composed of its coordinator and agents aiming to track the gradient of the corresponding cluster. In particular, the clusters exchange the aggregate quantities instead of their decisions to relieve the burden of communication. Under strongly monotone and mildly Lipschitz continuous assumptions, we rigorously prove that the algorithm linearly converges to a Nash equilibrium with a fixed step size.We present the applications in the context of the Energy Internet. Furthermore, the numerical results verify the effectiveness of the algorithm.
5G has expanded the traditional focus of wireless systems to embrace two new connectivity types: ultra-reliable low latency and massive communication. The technology context at the dawn of 6G is different from the past one for 5G, primarily due to the growing intelligence at the communicating nodes. This has driven the set of relevant communication problems beyond reliable transmission towards semantic and pragmatic communication. This paper puts the evolution of low-latency and massive communication towards 6G in the perspective of these new developments. At first, semantic/pragmatic communication problems are presented by drawing parallels to linguistics. We elaborate upon the relation of semantic communication to the information-theoretic problems of source/channel coding, while generalized real-time communication is put in the context of cyber-physical systems and real-time inference. The evolution of massive access towards massive closed-loop communication is elaborated upon, enabling interactive communication, learning, and cooperation among wireless sensors and actuators.
Randomized controlled trials (RCTs) are the gold standard for causal inference, but they are often powered only for average effects, making estimation of heterogeneous treatment effects (HTEs) challenging. Conversely, large-scale observational studies (OS) offer a wealth of data but suffer from confounding bias. Our paper presents a novel framework to leverage OS data for enhancing the efficiency in estimating conditional average treatment effects (CATEs) from RCTs while mitigating common biases. We propose an innovative approach to combine RCTs and OS data, expanding the traditionally used control arms from external sources. The framework relaxes the typical assumption of CATE invariance across populations, acknowledging the often unaccounted systematic differences between RCT and OS participants. We demonstrate this through the special case of a linear outcome model, where the CATE is sparsely different between the two populations. The core of our framework relies on learning potential outcome means from OS data and using them as a nuisance parameter in CATE estimation from RCT data. We further illustrate through experiments that using OS findings reduces the variance of the estimated CATE from RCTs and can decrease the required sample size for detecting HTEs.
In Japan, the Housing and Land Survey (HLS) provides municipality-level grouped data on household incomes. Although these data can be used for effective local policymaking, their analyses are hindered by several challenges, such as limited information attributed to grouping, the presence of non-sampled areas, and the very low frequency of implementing surveys. To address these challenges, we propose a novel grouped-data-based spatio-temporal finite mixture model to model the income distributions of multiple spatial units at multiple time points. A unique feature of the proposed method is that all the areas share common latent distributions and that the mixing proportions that include the spatial and temporal effects capture the potential area-wise heterogeneity. Thus, incorporating these effects can smooth out the quantities of interest over time and space, impute missing values, and predict future values. By treating the HLS data with the proposed method, we obtain complete maps of the income and poverty measures at an arbitrary time point, which can be used to facilitate rapid and efficient policymaking with fine granularity.
`Scale the model, scale the data, scale the GPU-farms' is the reigning sentiment in the world of generative AI today. While model scaling has been extensively studied, data scaling and its downstream impacts remain under explored. This is especially of critical importance in the context of visio-linguistic datasets whose main source is the World Wide Web, condensed and packaged as the CommonCrawl dump. This large scale data-dump, which is known to have numerous drawbacks, is repeatedly mined and serves as the data-motherlode for large generative models. In this paper, we: 1) investigate the effect of scaling datasets on hateful content through a comparative audit of the LAION-400M and LAION-2B-en, containing 400 million and 2 billion samples respectively, and 2) evaluate the downstream impact of scale on visio-linguistic models trained on these dataset variants by measuring racial bias of the models trained on them using the Chicago Face Dataset (CFD) as a probe. Our results show that 1) the presence of hateful content in datasets, when measured with a Hate Content Rate (HCR) metric on the inferences of the Pysentimiento hate-detection Natural Language Processing (NLP) model, increased by nearly $12\%$ and 2) societal biases and negative stereotypes were also exacerbated with scale on the models we evaluated. As scale increased, the tendency of the model to associate images of human faces with the `human being' class over 7 other offensive classes reduced by half. Furthermore, for the Black female category, the tendency of the model to associate their faces with the `criminal' class doubled, while quintupling for Black male faces. We present a qualitative and historical analysis of the model audit results, reflect on our findings and its implications for dataset curation practice, and close with a summary of our findings and potential future work to be done in this area.
This paper considers the learning of logical (Boolean) functions with focus on the generalization on the unseen (GOTU) setting, a strong case of out-of-distribution generalization. This is motivated by the fact that the rich combinatorial nature of data in certain reasoning tasks (e.g., arithmetic/logic) makes representative data sampling challenging, and learning successfully under GOTU gives a first vignette of an 'extrapolating' or 'reasoning' learner. We then study how different network architectures trained by (S)GD perform under GOTU and provide both theoretical and experimental evidence that for a class of network models including instances of Transformers, random features models, and diagonal linear networks, a min-degree-interpolator is learned on the unseen. We also provide evidence that other instances with larger learning rates or mean-field networks reach leaky min-degree solutions. These findings lead to two implications: (1) we provide an explanation to the length generalization problem (e.g., Anil et al. 2022); (2) we introduce a curriculum learning algorithm called Degree-Curriculum that learns monomials more efficiently by incrementing supports.
Reinforcement Learning (RL), bolstered by the expressive capabilities of Deep Neural Networks (DNNs) for function approximation, has demonstrated considerable success in numerous applications. However, its practicality in addressing a wide range of real-world scenarios, characterized by diverse and unpredictable dynamics, noisy signals, and large state and action spaces, remains limited. This limitation stems from issues such as poor data efficiency, limited generalization capabilities, a lack of safety guarantees, and the absence of interpretability, among other factors. To overcome these challenges and improve performance across these crucial metrics, one promising avenue is to incorporate additional structural information about the problem into the RL learning process. Various sub-fields of RL have proposed methods for incorporating such inductive biases. We amalgamate these diverse methodologies under a unified framework, shedding light on the role of structure in the learning problem, and classify these methods into distinct patterns of incorporating structure. By leveraging this comprehensive framework, we provide valuable insights into the challenges associated with structured RL and lay the groundwork for a design pattern perspective on RL research. This novel perspective paves the way for future advancements and aids in the development of more effective and efficient RL algorithms that can potentially handle real-world scenarios better.
This paper presents a novel approach for safe control synthesis using the dual formulation of the navigation problem. The main contribution of this paper is in the analytical construction of density functions for almost everywhere navigation with safety constraints. In contrast to the existing approaches, where density functions are used for the analysis of navigation problems, we use density functions for the synthesis of safe controllers. We provide convergence proof using the proposed density functions for navigation with safety. Further, we use these density functions to design feedback controllers capable of navigating in cluttered environments and high-dimensional configuration spaces. The proposed analytical construction of density functions overcomes the problem associated with navigation functions, which are known to exist but challenging to construct, and potential functions, which suffer from local minima. Application of the developed framework is demonstrated on simple integrator dynamics and fully actuated robotic systems.
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.