Non-Euclidean data that are indexed with a scalar predictor such as time are increasingly encountered in data applications, while statistical methodology and theory for such random objects are not well developed yet. To address the need for new methodology in this area, we develop a total variation regularization technique for nonparametric Fr\'echet regression, which refers to a regression setting where a response residing in a metric space is paired with a scalar predictor and the target is a conditional Fr\'echet mean. Specifically, we seek to approximate an unknown metric-space valued function by an estimator that minimizes the Fr\'echet version of least squares and at the same time has small total variation, appropriately defined for metric-space valued objects. We show that the resulting estimator is representable by a piece-wise constant function and establish the minimax convergence rate of the proposed estimator for metric data objects that reside in Hadamard spaces. We illustrate the numerical performance of the proposed method for both simulated and real data, including metric spaces of symmetric positive-definite matrices with the affine-invariant distance, of probability distributions on the real line with the Wasserstein distance, and of phylogenetic trees with the Billera--Holmes--Vogtmann metric.
When studying treatment effects in multilevel studies, investigators commonly use (semi-)parametric estimators, which make strong parametric assumptions about the outcome, the treatment, and/or the correlation between individuals. We propose two nonparametric, doubly robust, asymptotically Normal estimators of treatment effects that do not make such assumptions. The first estimator is an extension of the cross-fitting estimator applied to clustered settings. The second estimator is a new estimator that uses conditional propensity scores and an outcome covariance model to improve efficiency. We apply our estimators in simulation and empirical studies and find that they consistently obtain the smallest standard errors.
A novel confidence interval estimator is proposed for the risk difference in noninferiority binomial trials. The confidence interval is consistent with an exact unconditional test that preserves the type-I error, and has improved power, particularly for smaller sample sizes, compared to the confidence interval by Chan & Zhang (1999). The improved performance of the proposed confidence interval is theoretically justified and demonstrated with simulations and examples. An R package is also distributed that implements the proposed methods along with other confidence interval estimators.
Quantile regression has been successfully used to study heterogeneous and heavy-tailed data. Varying-coefficient models are frequently used to capture changes in the effect of input variables on the response as a function of an index or time. In this work, we study high-dimensional varying-coefficient quantile regression models and develop new tools for statistical inference. We focus on development of valid confidence intervals and honest tests for nonparametric coefficients at a fixed time point and quantile, while allowing for a high-dimensional setting where the number of input variables exceeds the sample size. Performing statistical inference in this regime is challenging due to the usage of model selection techniques in estimation. Nevertheless, we can develop valid inferential tools that are applicable to a wide range of data generating processes and do not suffer from biases introduced by model selection. We performed numerical simulations to demonstrate the finite sample performance of our method, and we also illustrated the application with a real data example.
Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single cell data set to test the independence between two types of single cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.
Implicit Processes (IPs) are flexible priors that can describe models such as Bayesian neural networks, neural samplers and data generators. IPs allow for approximate inference in function-space. This avoids some degenerate problems of parameter-space approximate inference due to the high number of parameters and strong dependencies. For this, an extra IP is often used to approximate the posterior of the prior IP. However, simultaneously adjusting the parameters of the prior IP and the approximate posterior IP is a challenging task. Existing methods that can tune the prior IP result in a Gaussian predictive distribution, which fails to capture important data patterns. By contrast, methods producing flexible predictive distributions by using another IP to approximate the posterior process cannot fit the prior IP to the observed data. We propose here a method that can carry out both tasks. For this, we rely on an inducing-point representation of the prior IP, as often done in the context of sparse Gaussian processes. The result is a scalable method for approximate inference with IPs that can tune the prior IP parameters to the data, and that provides accurate non-Gaussian predictive distributions.
Many machine learning problems involve regressing variables on a non-Euclidean manifold -- e.g. a discrete probability distribution, or the 6D pose of an object. One way to tackle these problems through gradient-based learning is to use a differentiable function that maps arbitrary inputs of a Euclidean space onto the manifold. In this paper, we establish a set of desirable properties for such mapping, and in particular highlight the importance of pre-images connectivity/convexity. We illustrate these properties with a case study regarding 3D rotations. Through theoretical considerations and methodological experiments on a variety of tasks, we review various differentiable mappings on the 3D rotation space, and conjecture about the importance of their local linearity. We show that a mapping based on Procrustes orthonormalization generally performs best among the mappings considered, but that a rotation vector representation might also be suitable when restricted to small angles.
Dual-energy X-ray tomography is considered in a context where the target under imaging consists of two distinct materials. The materials are assumed to be possibly intertwined in space, but at any given location there is only one material present. Further, two X-ray energies are chosen so that there is a clear difference in the spectral dependence of the attenuation coefficients of the two materials. A novel regularizer is presented for the inverse problem of reconstructing separate tomographic images for the two materials. A combination of two things, (a) non-negativity constraint, and (b) penalty term containing the inner product between the two material images, promotes the presence of at most one material in a given pixel. A preconditioned interior point method is derived for the minimization of the regularization functional. Numerical tests with digital phantoms suggest that the new algorithm outperforms the baseline method, Joint Total Variation regularization, in terms of correctly material-characterized pixels. While the method is tested only in a two-dimensional setting with two materials and two energies, the approach readily generalizes to three dimensions and more materials. The number of materials just needs to match the number of energies used in imaging.
This paper develops a new integrated ball (pseudo)metric which provides an intermediary between a chosen starting (pseudo)metric d and the L_p distance in general function spaces. Selecting d as the Hausdorff or Fr\'echet distances, we introduce integrated shape-sensitive versions of these supremum-based metrics. The new metrics allow for finer analyses in functional settings, not attainable applying the non-integrated versions directly. Moreover, convergent discrete approximations make computations feasible in practice.
Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that $IoU$ can be directly used as a regression loss. However, $IoU$ has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the weaknesses of $IoU$ by introducing a generalized version as both a new loss and a new metric. By incorporating this generalized $IoU$ ($GIoU$) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, $IoU$ based, and new, $GIoU$ based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.
Discrete random structures are important tools in Bayesian nonparametrics and the resulting models have proven effective in density estimation, clustering, topic modeling and prediction, among others. In this paper, we consider nested processes and study the dependence structures they induce. Dependence ranges between homogeneity, corresponding to full exchangeability, and maximum heterogeneity, corresponding to (unconditional) independence across samples. The popular nested Dirichlet process is shown to degenerate to the fully exchangeable case when there are ties across samples at the observed or latent level. To overcome this drawback, inherent to nesting general discrete random measures, we introduce a novel class of latent nested processes. These are obtained by adding common and group-specific completely random measures and, then, normalising to yield dependent random probability measures. We provide results on the partition distributions induced by latent nested processes, and develop an Markov Chain Monte Carlo sampler for Bayesian inferences. A test for distributional homogeneity across groups is obtained as a by product. The results and their inferential implications are showcased on synthetic and real data.