The self-attention mechanism utilizes large implicit weight matrices, programmed through dot product-based activations with very few trainable parameters, to enable long sequence modeling. In this paper, we investigate the possibility of discarding residual learning by employing large implicit kernels to achieve full context interaction at each layer of the network. To accomplish it, we introduce coordinate-based implicit MLPs as a slow network to generate hyper-kernels for another fast convolutional network. To get context-varying weights for fast dynamic encoding, we propose a $\mathrm{Hyper}\mathcal{Z{\cdot}Z{\cdot}W}$ operator that connects hyper-kernels ($\mathcal{W}$) and hidden activations ($\mathcal{Z}$) through simple elementwise multiplication, followed by convolution of $\mathcal{Z}$ using the context-dependent $\mathcal{W}$. Based on this design, we present a novel Terminator architecture that integrates hyper-kernels of different sizes to produce multi-branch hidden representations for enhancing the feature extraction capability of each layer. Additionally, a bottleneck layer is employed to compress the concatenated channels, allowing only valuable information to propagate to the subsequent layers. Notably, our model incorporates several innovative components and exhibits excellent properties, such as introducing local feedback error for updating the slow network, stable zero-mean features, faster training convergence, and fewer model parameters. Extensive experimental results on pixel-level 1D and 2D image classification benchmarks demonstrate the superior performance of our architecture.
Symbols (or more broadly, non-natural language textual representations) such as numerical sequences, molecular formulas, and table delimiters widely exist, playing important roles in various tasks such as abstract reasoning, chemical property prediction, and table question answering. Despite the impressive natural language comprehension capabilities of large language models (LLMs), their reasoning abilities for symbols remain inadequate, which could attributed to the difference between symbol representations and general natural languages. We propose symbol-to-language (S2L), a tuning-free method that enables large language models to solve symbol-related problems with information expressed in natural language. Specifically, S2L first converts the symbols involved to language-based representations, which can be implemented by prompting LLMs or leveraging external tools, then these language-based representations are integrated into the original problem via direct substitution or concatenation, serving as useful input information for LLMs. We evaluate the S2L method using both API-based (GPT-4, ChatGPT) and open-source (OpenChat) models over eight symbol-related tasks, ranging from symbol-only abstract reasoning to sentiment analysis in social media. Experimental results show that S2L consistently leads to superior performance. For example, by employing S2L for GPT-4, there can be average significant improvements of +21.9% and +9.5% for subtasks in 1D-ARC and Dyck language, respectively. Codes and data are available at //github.com/THUNLP-MT/symbol2language.
The creation of high-quality human-labeled image-caption datasets presents a significant bottleneck in the development of Visual-Language Models (VLMs). We propose a novel approach that leverages the strengths of Large Language Models (LLMs) and image generation models to create synthetic image-text pairs for efficient and effective VLM training. Our method employs pretraining a text-to-image model to synthesize image embeddings starting from captions generated by an LLM. These synthetic pairs are then used to train a VLM. Extensive experiments demonstrate that the VLM trained with synthetic data exhibits comparable performance on image captioning, while requiring a fraction of the data used by models trained solely on human-annotated data. In particular, we outperform the baseline by 17% through augmentation with a synthetic dataset. Furthermore, we show that synthesizing in the image embedding space is 25% faster than in the pixel space. This research introduces a promising technique for generating large-scale, customizable image datasets, leading to enhanced VLM performance and wider applicability across various domains, all with improved data efficiency and resource utilization.
Despite recent advancements in AI for robotics, grasping remains a partially solved challenge, hindered by the lack of benchmarks and reproducibility constraints. This paper introduces a vision-based grasping framework that can easily be transferred across multiple manipulators. Leveraging Quality-Diversity (QD) algorithms, the framework generates diverse repertoires of open-loop grasping trajectories, enhancing adaptability while maintaining a diversity of grasps. This framework addresses two main issues: the lack of an off-the-shelf vision module for detecting object pose and the generalization of QD trajectories to the whole robot operational space. The proposed solution combines multiple vision modules for 6DoF object detection and tracking while rigidly transforming QD-generated trajectories into the object frame. Experiments on a Franka Research 3 arm and a UR5 arm with a SIH Schunk hand demonstrate comparable performance when the real scene aligns with the simulation used for grasp generation. This work represents a significant stride toward building a reliable vision-based grasping module transferable to new platforms, while being adaptable to diverse scenarios without further training iterations.
Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into the SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This method maintains the flexibility of the text and is user-friendly. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR utilizes the pre-trained language model (e.g., T5 or CLIP) to enhance restoration. We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into SR, yields excellent results on both synthetic and real-world images. Code is available at: //github.com/zhengchen1999/PromptSR.
Deep models have achieved significant process on single image super-resolution (SISR) tasks, in particular large models with large kernel ($3\times3$ or more). However, the heavy computational footprint of such models prevents their deployment in real-time, resource-constrained environments. Conversely, $1\times1$ convolutions bring substantial computational efficiency, but struggle with aggregating local spatial representations, an essential capability to SISR models. In response to this dichotomy, we propose to harmonize the merits of both $3\times3$ and $1\times1$ kernels, and exploit a great potential for lightweight SISR tasks. Specifically, we propose a simple yet effective fully $1\times1$ convolutional network, named Shift-Conv-based Network (SCNet). By incorporating a parameter-free spatial-shift operation, it equips the fully $1\times1$ convolutional network with powerful representation capability while impressive computational efficiency. Extensive experiments demonstrate that SCNets, despite its fully $1\times1$ convolutional structure, consistently matches or even surpasses the performance of existing lightweight SR models that employ regular convolutions. The code and pre-trained models can be found at //github.com/Aitical/SCNet.
Diffusion models have enabled remarkably high-quality medical image generation, yet it is challenging to enforce anatomical constraints in generated images. This hampers many useful applications, including pre-registered image generation, counterfactual scenarios, and others. To this end, we propose a diffusion model-based method that supports anatomically-controllable medical image generation, by following a multi-class anatomical segmentation mask at each sampling step. We additionally introduce a random mask ablation training algorithm to enable conditioning on a selected combination of anatomical constraints while allowing flexibility in other anatomical areas. We compare our model ("Seg-Diff") to existing methods on breast MRI and abdominal/neck-to-pelvis CT datasets with a wide range of anatomical objects. Results show that it reaches a new state-of-the-art in the faithfulness of generated images to input anatomical masks on both datasets, and is on par for general anatomical realism. Finally, our model also enjoys the extra benefit of being able to adjust the anatomical similarity of generated images to real images of choice through interpolation in its latent space.
Despite the impressive performance across numerous tasks, large language models (LLMs) often fail in solving simple decision-making tasks due to the misalignment of the knowledge in LLMs with environments. On the contrary, reinforcement learning (RL) agents learn policies from scratch, which makes them always align with environments but difficult to incorporate prior knowledge for efficient explorations. To narrow the gap, we propose TWOSOME, a novel general online framework that deploys LLMs as decision-making agents to efficiently interact and align with embodied environments via RL without requiring any prepared datasets or prior knowledge of the environments. Firstly, we query the joint probabilities of each valid action with LLMs to form behavior policies. Then, to enhance the stability and robustness of the policies, we propose two normalization methods and summarize four prompt design principles. Finally, we design a novel parameter-efficient training architecture where the actor and critic share one frozen LLM equipped with low-rank adapters (LoRA) updated by PPO. We conduct extensive experiments to evaluate TWOSOME. i) TWOSOME exhibits significantly better sample efficiency and performance compared to the conventional RL method, PPO, and prompt tuning method, SayCan, in both classical decision-making environment, Overcooked, and simulated household environment, VirtualHome. ii) Benefiting from LLMs' open-vocabulary feature, TWOSOME shows superior generalization ability to unseen tasks. iii) Under our framework, there is no significant loss of the LLMs' original ability during online PPO finetuning.
Achieving high-performance computation on quantum systems presents a formidable challenge that necessitates bridging the capabilities between quantum hardware and classical computing resources. This study introduces an innovative distribution-aware Quantum-Classical-Quantum (QCQ) architecture, which integrates cutting-edge quantum software framework works with high-performance classical computing resources to address challenges in quantum simulation for materials and condensed matter physics. At the heart of this architecture is the seamless integration of VQE algorithms running on QPUs for efficient quantum state preparation, Tensor Network states, and QCNNs for classifying quantum states on classical hardware. For benchmarking quantum simulators, the QCQ architecture utilizes the cuQuantum SDK to leverage multi-GPU acceleration, integrated with PennyLane's Lightning plugin, demonstrating up to tenfold increases in computational speed for complex phase transition classification tasks compared to traditional CPU-based methods. This significant acceleration enables models such as the transverse field Ising and XXZ systems to accurately predict phase transitions with a 99.5% accuracy. The architecture's ability to distribute computation between QPUs and classical resources addresses critical bottlenecks in Quantum-HPC, paving the way for scalable quantum simulation. The QCQ framework embodies a synergistic combination of quantum algorithms, machine learning, and Quantum-HPC capabilities, enhancing its potential to provide transformative insights into the behavior of quantum systems across different scales. As quantum hardware continues to improve, this hybrid distribution-aware framework will play a crucial role in realizing the full potential of quantum computing by seamlessly integrating distributed quantum resources with the state-of-the-art classical computing infrastructure.
Optimal decision-making for trajectory tracking in partially observable, stochastic environments where the number of active localization updates -- the process by which the agent obtains its true state information from the sensors -- are limited, presents a significant challenge. Traditional methods often struggle to balance resource conservation, accurate state estimation and precise tracking, resulting in suboptimal performance. This problem is particularly pronounced in environments with large action spaces, where the need for frequent, accurate state data is paramount, yet the capacity for active localization updates is restricted by external limitations. This paper introduces ComTraQ-MPC, a novel framework that combines Deep Q-Networks (DQN) and Model Predictive Control (MPC) to optimize trajectory tracking with constrained active localization updates. The meta-trained DQN ensures adaptive active localization scheduling, while the MPC leverages available state information to improve tracking. The central contribution of this work is their reciprocal interaction: DQN's update decisions inform MPC's control strategy, and MPC's outcomes refine DQN's learning, creating a cohesive, adaptive system. Empirical evaluations in simulated and real-world settings demonstrate that ComTraQ-MPC significantly enhances operational efficiency and accuracy, providing a generalizable and approximately optimal solution for trajectory tracking in complex partially observable environments.
The low resolution of objects of interest in aerial images makes pedestrian detection and action detection extremely challenging tasks. Furthermore, using deep convolutional neural networks to process large images can be demanding in terms of computational requirements. In order to alleviate these challenges, we propose a two-step, yes and no question answering framework to find specific individuals doing one or multiple specific actions in aerial images. First, a deep object detector, Single Shot Multibox Detector (SSD), is used to generate object proposals from small aerial images. Second, another deep network, is used to learn a latent common sub-space which associates the high resolution aerial imagery and the pedestrian action labels that are provided by the human-based sources