Automated visual inspection of on-and offshore wind turbines using aerial robots provides several benefits, namely, a safe working environment by circumventing the need for workers to be suspended high above the ground, reduced inspection time, preventive maintenance, and access to hard-to-reach areas. A novel nonlinear model predictive control (NMPC) framework alongside a global wind turbine path planner is proposed to achieve distance-optimal coverage for wind turbine inspection. Unlike traditional MPC formulations, visual tracking NMPC (VT-NMPC) is designed to track an inspection surface, instead of a position and heading trajectory, thereby circumventing the need to provide an accurate predefined trajectory for the drone. An additional capability of the proposed VT-NMPC method is that by incorporating inspection requirements as visual tracking costs to minimize, it naturally achieves the inspection task successfully while respecting the physical constraints of the drone. Multiple simulation runs and real-world tests demonstrate the efficiency and efficacy of the proposed automated inspection framework, which outperforms the traditional MPC designs, by providing full coverage of the target wind turbine blades as well as its robustness to changing wind conditions. The implementation codes are open-sourced.
Beamforming is a powerful tool for physical layer security, as it can be used for steering signals towards legitimate receivers and away from eavesdroppers. An active eavesdropper, however, can interfere with the pilot phase that the transmitter needs to acquire the channel knowledge necessary for beamforming. By doing so, the eavesdropper can make the transmitter form beams towards the eavesdropper rather than towards the legitimate receiver. To mitigate active eavesdroppers, we propose VILLAIN, a novel channel estimator that uses secret pilots. When an eavesdropper interferes with the pilot phase, VILLAIN produces a channel estimate that is orthogonal to the eavesdropper's channel (in the noiseless case). We prove that beamforming based on this channel estimate delivers the highest possible signal power to the legitimate receiver without delivering any signal power to the eavesdropper. Simulations show that VILLAIN mitigates active eavesdroppers also in the noisy case.
Multicalibration is a notion of fairness for predictors that requires them to provide calibrated predictions across a large set of protected groups. Multicalibration is known to be a distinct goal than loss minimization, even for simple predictors such as linear functions. In this work, we consider the setting where the protected groups can be represented by neural networks of size $k$, and the predictors are neural networks of size $n > k$. We show that minimizing the squared loss over all neural nets of size $n$ implies multicalibration for all but a bounded number of unlucky values of $n$. We also give evidence that our bound on the number of unlucky values is tight, given our proof technique. Previously, results of the flavor that loss minimization yields multicalibration were known only for predictors that were near the ground truth, hence were rather limited in applicability. Unlike these, our results rely on the expressivity of neural nets and utilize the representation of the predictor.
Developing generalizable manipulation skills is a core challenge in embodied AI. This includes generalization across diverse task configurations, encompassing variations in object shape, density, friction coefficient, and external disturbances such as forces applied to the robot. Rapid Motor Adaptation (RMA) offers a promising solution to this challenge. It posits that essential hidden variables influencing an agent's task performance, such as object mass and shape, can be effectively inferred from the agent's action and proprioceptive history. Drawing inspiration from RMA in locomotion and in-hand rotation, we use depth perception to develop agents tailored for rapid motor adaptation in a variety of manipulation tasks. We evaluated our agents on four challenging tasks from the Maniskill2 benchmark, namely pick-and-place operations with hundreds of objects from the YCB and EGAD datasets, peg insertion with precise position and orientation, and operating a variety of faucets and handles, with customized environment variations. Empirical results demonstrate that our agents surpass state-of-the-art methods like automatic domain randomization and vision-based policies, obtaining better generalization performance and sample efficiency.
The paper explores the industrial multimodal Anomaly Detection (AD) task, which exploits point clouds and RGB images to localize anomalies. We introduce a novel light and fast framework that learns to map features from one modality to the other on nominal samples. At test time, anomalies are detected by pinpointing inconsistencies between observed and mapped features. Extensive experiments show that our approach achieves state-of-the-art detection and segmentation performance in both the standard and few-shot settings on the MVTec 3D-AD dataset while achieving faster inference and occupying less memory than previous multimodal AD methods. Moreover, we propose a layer-pruning technique to improve memory and time efficiency with a marginal sacrifice in performance.
Linear arrangements of graphs are a well-known type of graph labeling and are found at the heart of many important computational problems, such as the Minimum Linear Arrangement Problem (minLA). A linear arrangement is usually defined as a permutation of the $n$ vertices of a graph. An intuitive geometric setting is that of vertices lying on consecutive integer positions in the real line, starting at 1; edges are typically drawn as semicircles above the real line. In this paper we study the Maximum Linear Arrangement problem (MaxLA), the maximization variant of minLA and a less studied problem than minLA. We a devise new characterization of maximum arrangements of general graphs, and prove that MaxLA can be solved for cycle graphs in constant time, and for $k$-linear trees ($k\le2$) in time $O(n)$. We present a simple algorithm that solves a constrained variant of MaxLA, which we call bipartite MaxLA, in time $O(n)$. This algorithm has two promising characteristics. First, it solves MaxLA for most trees consisting of a few tenths of nodes. Second, it produces a high quality approximation to MaxLA for trees where the algorithm fails to solve MaxLA. Furthermore, we conjecture this algorithm solves MaxLA for at least $50\%$ of all free trees.
Text-to-image generation using diffusion models has seen explosive popularity owing to their ability in producing high quality images adhering to text prompts. However, production-grade diffusion model serving is a resource intensive task that not only require high-end GPUs which are expensive but also incurs considerable latency. In this paper, we introduce a technique called approximate-caching that can reduce such iterative denoising steps for an image generation based on a prompt by reusing intermediate noise states created during a prior image generation for similar prompts. Based on this idea, we present an end to end text-to-image system, Nirvana, that uses the approximate-caching with a novel cache management-policy Least Computationally Beneficial and Frequently Used (LCBFU) to provide % GPU compute savings, 19.8% end-to-end latency reduction and 19% dollar savings, on average, on two real production workloads. We further present an extensive characterization of real production text-to-image prompts from the perspective of caching, popularity and reuse of intermediate states in a large production environment.
Building a generalist agent that can interact with the world is the intriguing target of AI systems, thus spurring the research for embodied navigation, where an agent is required to navigate according to instructions or respond to queries. Despite the major progress attained, previous works primarily focus on task-specific agents and lack generalizability to unseen scenarios. Recently, LLMs have presented remarkable capabilities across various fields, and provided a promising opportunity for embodied navigation. Drawing on this, we propose the first generalist model for embodied navigation, NaviLLM. It adapts LLMs to embodied navigation by introducing schema-based instruction. The schema-based instruction flexibly casts various tasks into generation problems, thereby unifying a wide range of tasks. This approach allows us to integrate diverse data sources from various datasets into the training, equipping NaviLLM with a wide range of capabilities required by embodied navigation. We conduct extensive experiments to evaluate the performance and generalizability of our model. The experimental results demonstrate that our unified model achieves state-of-the-art performance on CVDN, SOON, and ScanQA. Specifically, it surpasses the previous stats-of-the-art method by a significant margin of 29% in goal progress on CVDN. Moreover, our model also demonstrates strong generalizability and presents impressive results on unseen tasks, e.g., embodied question answering and 3D captioning.
Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.
This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way---just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. See related articles at //explained.ai
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.