亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel learning framework for Koopman operator of nonlinear dynamical systems that is informed by the governing equation and guarantees long-time stability and robustness to noise. In contrast to existing frameworks where either ad-hoc observables or blackbox neural networks are used to construct observables in the extended dynamic mode decomposition (EDMD), our observables are informed by governing equations via Polyflow. To improve the noise robustness and guarantee long-term stability, we designed a stable parameterization of the Koopman operator together with a progressive learning strategy for roll-out recurrent loss. To further improve model performance in the phase space, a simple iterative strategy of data augmentation was developed. Numerical experiments of prediction and control of classic nonlinear systems with ablation study showed the effectiveness of the proposed techniques over several state-of-the-art practices.

相關內容

The recent development of fact verification systems with natural logic has enhanced their explainability by aligning claims with evidence through set-theoretic operators, providing faithful justifications. Despite these advancements, such systems often rely on a large amount of training data annotated with natural logic. To address this issue, we propose a zero-shot method that utilizes the generalization capabilities of instruction-tuned large language models. To comprehensively assess the zero-shot capabilities of our method and other fact verification systems, we evaluate all models on both artificial and real-world claims, including multilingual datasets. We also compare our method against other fact verification systems in two setups. First, in the zero-shot generalization setup, we demonstrate that our approach outperforms other systems that were not specifically trained on natural logic data, achieving an average accuracy improvement of 8.96 points over the best-performing baseline. Second, in the zero-shot transfer setup, we show that current systems trained on natural logic data do not generalize well to other domains, and our method outperforms these systems across all datasets with real-world claims.

Designing sample-efficient and computationally feasible reinforcement learning (RL) algorithms is particularly challenging in environments with large or infinite state and action spaces. In this paper, we advance this effort by presenting an efficient algorithm for Markov Decision Processes (MDPs) where the state-action value function of any policy is linear in a given feature map. This challenging setting can model environments with infinite states and actions, strictly generalizes classic linear MDPs, and currently lacks a computationally efficient algorithm under online access to the MDP. Specifically, we introduce a new RL algorithm that efficiently finds a near-optimal policy in this setting, using a number of episodes and calls to a cost-sensitive classification (CSC) oracle that are both polynomial in the problem parameters. Notably, our CSC oracle can be efficiently implemented when the feature dimension is constant, representing a clear improvement over state-of-the-art methods, which require solving non-convex problems with horizon-many variables and can incur computational costs that are exponential in the horizon.

This letter introduces a machine-learning approach to learning the semantic dynamics of correlated systems with different control rules and dynamics. By leveraging the Koopman operator in an autoencoder (AE) framework, the system's state evolution is linearized in the latent space using a dynamic semantic Koopman (DSK) model, capturing the baseline semantic dynamics. Signal temporal logic (STL) is incorporated through a logical semantic Koopman (LSK) model to encode system-specific control rules. These models form the proposed logical Koopman AE framework that reduces communication costs while improving state prediction accuracy and control performance, showing a 91.65% reduction in communication samples and significant performance gains in simulation.

Sample selection improves the efficiency and effectiveness of machine learning models by providing informative and representative samples. Typically, samples can be modeled as a sample graph, where nodes are samples and edges represent their similarities. Most existing methods are based on local information, such as the training difficulty of samples, thereby overlooking global information, such as connectivity patterns. This oversight can result in suboptimal selection because global information is crucial for ensuring that the selected samples well represent the structural properties of the graph. To address this issue, we employ structural entropy to quantify global information and losslessly decompose it from the whole graph to individual nodes using the Shapley value. Based on the decomposition, we present $\textbf{S}$tructural-$\textbf{E}$ntropy-based sample $\textbf{S}$election ($\textbf{SES}$), a method that integrates both global and local information to select informative and representative samples. SES begins by constructing a $k$NN-graph among samples based on their similarities. It then measures sample importance by combining structural entropy (global metric) with training difficulty (local metric). Finally, SES applies importance-biased blue noise sampling to select a set of diverse and representative samples. Comprehensive experiments on three learning scenarios -- supervised learning, active learning, and continual learning -- clearly demonstrate the effectiveness of our method.

We present a constructive universal approximation theorem for learning machines equipped with joint-group-equivariant feature maps, based on the group representation theory. ``Constructive'' here indicates that the distribution of parameters is given in a closed-form expression known as the ridgelet transform. Joint-group-equivariance encompasses a broad class of feature maps that generalize classical group-equivariance. Notably, this class includes fully-connected networks, which are not group-equivariant but are joint-group-equivariant. Moreover, our main theorem also unifies the universal approximation theorems for both shallow and deep networks. While the universality of shallow networks has been investigated in a unified manner by the ridgelet transform, the universality of deep networks has been investigated in a case-by-case manner.

Given a finite set of sample points, meta-learning algorithms aim to learn an optimal adaptation strategy for new, unseen tasks. Often, this data can be ambiguous as it might belong to different tasks concurrently. This is particularly the case in meta-regression tasks. In such cases, the estimated adaptation strategy is subject to high variance due to the limited amount of support data for each task, which often leads to sub-optimal generalization performance. In this work, we address the problem of variance reduction in gradient-based meta-learning and formalize the class of problems prone to this, a condition we refer to as \emph{task overlap}. Specifically, we propose a novel approach that reduces the variance of the gradient estimate by weighing each support point individually by the variance of its posterior over the parameters. To estimate the posterior, we utilize the Laplace approximation, which allows us to express the variance in terms of the curvature of the loss landscape of our meta-learner. Experimental results demonstrate the effectiveness of the proposed method and highlight the importance of variance reduction in meta-learning.

The expanding complexity and dimensionality in the search space can adversely affect inductive learning in fuzzy rule classifiers, thus impacting the scalability and accuracy of fuzzy systems. This research specifically addresses the challenge of diabetic classification by employing the Brain Storm Optimization (BSO) algorithm to propose a novel fuzzy system that redefines rule generation for this context. An exponential model is integrated into the standard BSO algorithm to enhance rule derivation, tailored specifically for diabetes-related data. The innovative fuzzy system is then applied to classification tasks involving diabetic datasets, demonstrating a substantial improvement in classification accuracy, as evidenced by our experiments.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

北京阿比特科技有限公司