亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Aligning agent behaviors with diverse human preferences remains a challenging problem in reinforcement learning (RL), owing to the inherent abstractness and mutability of human preferences. To address these issues, we propose AlignDiff, a novel framework that leverages RL from Human Feedback (RLHF) to quantify human preferences, covering abstractness, and utilizes them to guide diffusion planning for zero-shot behavior customizing, covering mutability. AlignDiff can accurately match user-customized behaviors and efficiently switch from one to another. To build the framework, we first establish the multi-perspective human feedback datasets, which contain comparisons for the attributes of diverse behaviors, and then train an attribute strength model to predict quantified relative strengths. After relabeling behavioral datasets with relative strengths, we proceed to train an attribute-conditioned diffusion model, which serves as a planner with the attribute strength model as a director for preference aligning at the inference phase. We evaluate AlignDiff on various locomotion tasks and demonstrate its superior performance on preference matching, switching, and covering compared to other baselines. Its capability of completing unseen downstream tasks under human instructions also showcases the promising potential for human-AI collaboration. More visualization videos are released on //aligndiff.github.io/.

相關內容

As video analysis using deep learning models becomes more widespread, the vulnerability of such models to adversarial attacks is becoming a pressing concern. In particular, Universal Adversarial Perturbation (UAP) poses a significant threat, as a single perturbation can mislead deep learning models on entire datasets. We propose a novel video UAP using image data and image model. This enables us to take advantage of the rich image data and image model-based studies available for video applications. However, there is a challenge that image models are limited in their ability to analyze the temporal aspects of videos, which is crucial for a successful video attack. To address this challenge, we introduce the Breaking Temporal Consistency (BTC) method, which is the first attempt to incorporate temporal information into video attacks using image models. We aim to generate adversarial videos that have opposite patterns to the original. Specifically, BTC-UAP minimizes the feature similarity between neighboring frames in videos. Our approach is simple but effective at attacking unseen video models. Additionally, it is applicable to videos of varying lengths and invariant to temporal shifts. Our approach surpasses existing methods in terms of effectiveness on various datasets, including ImageNet, UCF-101, and Kinetics-400.

Extensive research on formal verification of machine learning (ML) systems indicates that learning from data alone often fails to capture underlying background knowledge. A variety of verifiers have been developed to ensure that a machine-learnt model satisfies correctness and safety properties, however, these verifiers typically assume a trained network with fixed weights. ML-enabled autonomous systems are required to not only detect incorrect predictions, but should also possess the ability to self-correct, continuously improving and adapting. A promising approach for creating ML models that inherently satisfy constraints is to encode background knowledge as logical constraints that guide the learning process via so-called differentiable logics. In this research preview, we compare and evaluate various logics from the literature in weakly-supervised contexts, presenting our findings and highlighting open problems for future work. Our experimental results are broadly consistent with results reported previously in literature; however, learning with differentiable logics introduces a new hyperparameter that is difficult to tune and has significant influence on the effectiveness of the logics.

Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available at //motion-lab.github.io/AdaptNet.

Language models, given their black-box nature, often exhibit sensitivity to input perturbations, leading to trust issues due to hallucinations. To bolster trust, it's essential to understand these models' failure modes and devise strategies to enhance their performance. In this study, we propose a framework to study the effect of input perturbations on language models of different scales, from pre-trained models to large language models (LLMs). We use fine-tuning to train a robust model to perturbations, and we investigate whether exposure to one perturbation improves or degrades the model's performance on other perturbations. To address multi-perturbation robustness, we suggest three distinct training strategies. We also extend the framework to LLMs via a chain of thought(COT) prompting with exemplars. We instantiate our framework for the Tabular-NLI task and show that the proposed strategies train the model robust to different perturbations without losing accuracy on a given dataset.

With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

Graph representation learning resurges as a trending research subject owing to the widespread use of deep learning for Euclidean data, which inspire various creative designs of neural networks in the non-Euclidean domain, particularly graphs. With the success of these graph neural networks (GNN) in the static setting, we approach further practical scenarios where the graph dynamically evolves. Existing approaches typically resort to node embeddings and use a recurrent neural network (RNN, broadly speaking) to regulate the embeddings and learn the temporal dynamics. These methods require the knowledge of a node in the full time span (including both training and testing) and are less applicable to the frequent change of the node set. In some extreme scenarios, the node sets at different time steps may completely differ. To resolve this challenge, we propose EvolveGCN, which adapts the graph convolutional network (GCN) model along the temporal dimension without resorting to node embeddings. The proposed approach captures the dynamism of the graph sequence through using an RNN to evolve the GCN parameters. Two architectures are considered for the parameter evolution. We evaluate the proposed approach on tasks including link prediction, edge classification, and node classification. The experimental results indicate a generally higher performance of EvolveGCN compared with related approaches. The code is available at \url{//github.com/IBM/EvolveGCN}.

Knowledge representation learning (KRL) aims to represent entities and relations in knowledge graph in low-dimensional semantic space, which have been widely used in massive knowledge-driven tasks. In this article, we introduce the reader to the motivations for KRL, and overview existing approaches for KRL. Afterwards, we extensively conduct and quantitative comparison and analysis of several typical KRL methods on three evaluation tasks of knowledge acquisition including knowledge graph completion, triple classification, and relation extraction. We also review the real-world applications of KRL, such as language modeling, question answering, information retrieval, and recommender systems. Finally, we discuss the remaining challenges and outlook the future directions for KRL. The codes and datasets used in the experiments can be found in //github.com/thunlp/OpenKE.

In recent years, a specific machine learning method called deep learning has gained huge attraction, as it has obtained astonishing results in broad applications such as pattern recognition, speech recognition, computer vision, and natural language processing. Recent research has also been shown that deep learning techniques can be combined with reinforcement learning methods to learn useful representations for the problems with high dimensional raw data input. This chapter reviews the recent advances in deep reinforcement learning with a focus on the most used deep architectures such as autoencoders, convolutional neural networks and recurrent neural networks which have successfully been come together with the reinforcement learning framework.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司