亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One of the most important studies in finance is to find out whether stock returns could be predicted. This research aims to create a new multivariate model, which includes dividend yield, earnings-to-price ratio, book-to-market ratio as well as consumption-wealth ratio as explanatory variables, for future stock returns predictions. The new multivariate model will be assessed for its forecasting performance using empirical analysis. The empirical analysis is performed on S&P500 quarterly data from Quarter 1, 1952 to Quarter 4, 2019 as well as S&P500 monthly data from Month 12, 1920 to Month 12, 2019. Results have shown this new multivariate model has predictability for future stock returns. When compared to other benchmark models, the new multivariate model performs the best in terms of the Root Mean Squared Error (RMSE) most of the time.

相關內容

Backbone curves are used to characterize nonlinear responses of structural elements by simplifying the cyclic force-deformation relationships. Accurate modeling of cyclic behavior can be achieved with a reliable backbone curve model. In this paper, a novel machine learning-based model is proposed to predict the backbone curve of reinforced concrete shear (structural) walls based on key wall design properties. Reported experimental responses of a detailed test database consisting of 384 reinforced concrete shear walls under cyclic loading were utilized to predict seven critical points to define the backbone curves, namely: shear at cracking point; shear and displacement at yielding point; and peak shear force and corresponding displacement; and ultimate displacement and corresponding shear. The predictive models were developed based on the Gaussian Process Regression method (GPR), which adopts a non-parametric Bayesian approach. The ability of the proposed GPR-based model to make accurate and robust estimations for the backbone curves was validated based on unseen data using a hundred random sampling procedure. The prediction accuracies (i.e., ratio of predicted/actual values) are close to 1.0, whereas the coefficient of determination (R2) values range between 0.90-0.97 for all backbone points. The proposed GPR-based backbone models are shown to reflect cyclic behavior more accurately than the traditional methods, therefore, they would serve the earthquake engineering community for better evaluation of the seismic performance of existing buildings.

Shapley values are today extensively used as a model-agnostic explanation framework to explain complex predictive machine learning models. Shapley values have desirable theoretical properties and a sound mathematical foundation. Precise Shapley value estimates for dependent data rely on accurate modeling of the dependencies between all feature combinations. In this paper, we use a variational autoencoder with arbitrary conditioning (VAEAC) to model all feature dependencies simultaneously. We demonstrate through comprehensive simulation studies that VAEAC outperforms the state-of-the-art methods for a wide range of settings for both continuous and mixed dependent features. Finally, we apply VAEAC to the Abalone data set from the UCI Machine Learning Repository.

Convolutional dictionary learning (CDL), the problem of estimating shift-invariant templates from data, is typically conducted in the absence of a prior/structure on the templates. In data-scarce or low signal-to-noise ratio (SNR) regimes, learned templates overfit the data and lack smoothness, which can affect the predictive performance of downstream tasks. To address this limitation, we propose GPCDL, a convolutional dictionary learning framework that enforces priors on templates using Gaussian Processes (GPs). With the focus on smoothness, we show theoretically that imposing a GP prior is equivalent to Wiener filtering the learned templates, thereby suppressing high-frequency components and promoting smoothness. We show that the algorithm is a simple extension of the classical iteratively reweighted least squares algorithm, independent of the choice of GP kernels. This property allows one to experiment flexibly with different smoothness assumptions. Through simulation, we show that GPCDL learns smooth dictionaries with better accuracy than the unregularized alternative across a range of SNRs. Through an application to neural spiking data, we show that GPCDL learns a more accurate and visually-interpretable smooth dictionary, leading to superior predictive performance compared to non-regularized CDL, as well as parametric alternatives.

In large epidemiologic studies, self-reported outcomes are often used to record disease status more frequently than by gold standard diagnostic tests alone. While self-reported disease outcomes are easier to obtain than diagnostic test results, they are often prone to error. There has recently been interest in using error-prone, auxiliary outcomes to improve the efficiency of inference for discrete time-to-event analyses. We have developed a new augmented likelihood approach that incorporates auxiliary data into the analysis of gold standard time-to-event outcome, which can be considered when self-reported outcomes are available in addition to a gold standard endpoint. We conduct a numerical study to show how we can improve statistical efficiency by using the proposed method instead of standard approaches for interval-censored survival data that do not leverage auxiliary data. We also extended this method for the complex survey design setting so that it can be applied in our motivating data example. We apply this method to data from the Hispanic Community Health Study/Study of Latinos in order to assess the association between energy and protein intake and the risk of incident diabetes. In our application, we demonstrate how our method can be used in combination with regression calibration to additionally address the covariate measurement error in the self-reported diet.

We consider the problem of learning a tree-structured Ising model from data, such that subsequent predictions computed using the model are accurate. Concretely, we aim to learn a model such that posteriors $P(X_i|X_S)$ for small sets of variables $S$ are accurate. Since its introduction more than 50 years ago, the Chow-Liu algorithm, which efficiently computes the maximum likelihood tree, has been the benchmark algorithm for learning tree-structured graphical models. A bound on the sample complexity of the Chow-Liu algorithm with respect to the prediction-centric local total variation loss was shown in [BK19]. While those results demonstrated that it is possible to learn a useful model even when recovering the true underlying graph is impossible, their bound depends on the maximum strength of interactions and thus does not achieve the information-theoretic optimum. In this paper, we introduce a new algorithm that carefully combines elements of the Chow-Liu algorithm with tree metric reconstruction methods to efficiently and optimally learn tree Ising models under a prediction-centric loss. Our algorithm is robust to model misspecification and adversarial corruptions. In contrast, we show that the celebrated Chow-Liu algorithm can be arbitrarily suboptimal.

In many contexts it is useful to predict the number of individuals in some population who will initiate a particular activity during a given period. For example, the number of users who will install a software update, the number of customers who will use a new feature on a website or who will participate in an A/B test. In practical settings, there is heterogeneity amongst individuals with regard to the distribution of time until they will initiate. For these reasons it is inappropriate to assume that the number of new individuals observed on successive days will be identically distributed. Given observations on the number of unique users participating in an initial period, we present a simple but novel Bayesian method for predicting the number of additional individuals who will subsequently participate during a subsequent period. We illustrate the performance of the method in predicting sample size in online experimentation.

We propose a novel framework to perform classification via deep learning in the presence of noisy annotations. When trained on noisy labels, deep neural networks have been observed to first fit the training data with clean labels during an "early learning" phase, before eventually memorizing the examples with false labels. We prove that early learning and memorization are fundamental phenomena in high-dimensional classification tasks, even in simple linear models, and give a theoretical explanation in this setting. Motivated by these findings, we develop a new technique for noisy classification tasks, which exploits the progress of the early learning phase. In contrast with existing approaches, which use the model output during early learning to detect the examples with clean labels, and either ignore or attempt to correct the false labels, we take a different route and instead capitalize on early learning via regularization. There are two key elements to our approach. First, we leverage semi-supervised learning techniques to produce target probabilities based on the model outputs. Second, we design a regularization term that steers the model towards these targets, implicitly preventing memorization of the false labels. The resulting framework is shown to provide robustness to noisy annotations on several standard benchmarks and real-world datasets, where it achieves results comparable to the state of the art.

We present a new approach for pretraining a bi-directional transformer model that provides significant performance gains across a variety of language understanding problems. Our model solves a cloze-style word reconstruction task, where each word is ablated and must be predicted given the rest of the text. Experiments demonstrate large performance gains on GLUE and new state of the art results on NER as well as constituency parsing benchmarks, consistent with the concurrently introduced BERT model. We also present a detailed analysis of a number of factors that contribute to effective pretraining, including data domain and size, model capacity, and variations on the cloze objective.

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

Model-based methods for recommender systems have been studied extensively in recent years. In systems with large corpus, however, the calculation cost for the learnt model to predict all user-item preferences is tremendous, which makes full corpus retrieval extremely difficult. To overcome the calculation barriers, models such as matrix factorization resort to inner product form (i.e., model user-item preference as the inner product of user, item latent factors) and indexes to facilitate efficient approximate k-nearest neighbor searches. However, it still remains challenging to incorporate more expressive interaction forms between user and item features, e.g., interactions through deep neural networks, because of the calculation cost. In this paper, we focus on the problem of introducing arbitrary advanced models to recommender systems with large corpus. We propose a novel tree-based method which can provide logarithmic complexity w.r.t. corpus size even with more expressive models such as deep neural networks. Our main idea is to predict user interests from coarse to fine by traversing tree nodes in a top-down fashion and making decisions for each user-node pair. We also show that the tree structure can be jointly learnt towards better compatibility with users' interest distribution and hence facilitate both training and prediction. Experimental evaluations with two large-scale real-world datasets show that the proposed method significantly outperforms traditional methods. Online A/B test results in Taobao display advertising platform also demonstrate the effectiveness of the proposed method in production environments.

北京阿比特科技有限公司