亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the context of right-censored and interval-censored data we develop asymptotic formulas to compute pseudo-observations for the survival function and the Restricted Mean Survival Time (RMST). Those formulas are based on the original estimators and do not involve computation of the jackknife estimators. For right-censored data, Von Mises expansions of the Kaplan-Meier estimator are used to derive the pseudo-observations. For interval censored data, a general class of parametric models for the survival function is studied. An asymptotic representation of the pseudo-observations is derived involving the Hessian matrix and the score vector of the density. The formula is illustrated on the piecewise-constant hazard model for the RMST. The proposed approximations are extremely accurate, even for small sample sizes, as illustrated on Monte-Carlo simulations and real data. We also study the gain in terms of computation time, as compared to the original jackknife method, which can be substantial for large dataset.

相關內容

The semiparametric estimation approach, which includes inverse-probability-weighted and doubly robust estimation using propensity scores, is a standard tool for marginal structural models basically used in causal inference, and is rapidly being extended and generalized in various directions. On the other hand, although model selection is indispensable in statistical analysis, information criterion for selecting an appropriate marginal structure has just started to be developed. In this paper, based on the original idea of the information criterion, we derive an AIC-type criterion. We define a risk function based on the Kullback-Leibler divergence as the cornerstone of the information criterion, and treat a general causal inference model that is not necessarily of the type represented as a linear model. The causal effects to be estimated are those in the general population, such as the average treatment effect on the treated or the average treatment effect on the untreated. In light of the fact that doubly robust estimation, which allows either the model of the assignment variable or the model of the outcome variable to be wrong, is attached importance in this field, we will make the information criterion itself doubly robust, so that either one of the two can be wrong and still be a mathematically valid criterion.

We present a method for producing unbiased parameter estimates and valid confidence intervals under the constraints of differential privacy, a formal framework for limiting individual information leakage from sensitive data. Prior work in this area is limited in that it is tailored to calculating confidence intervals for specific statistical procedures, such as mean estimation or simple linear regression. While other recent work can produce confidence intervals for more general sets of procedures, they either yield only approximately unbiased estimates, are designed for one-dimensional outputs, or assume significant user knowledge about the data-generating distribution. Our method induces distributions of mean and covariance estimates via the bag of little bootstraps (BLB) and uses them to privately estimate the parameters' sampling distribution via a generalized version of the CoinPress estimation algorithm. If the user can bound the parameters of the BLB-induced parameters and provide heavier-tailed families, the algorithm produces unbiased parameter estimates and valid confidence intervals which hold with arbitrarily high probability. These results hold in high dimensions and for any estimation procedure which behaves nicely under the bootstrap.

We study approximation methods for a large class of mixed models with a probit link function that includes mixed versions of the binomial model, the multinomial model, and generalized survival models. The class of models is special because the marginal likelihood can be expressed as Gaussian weighted integrals or as multivariate Gaussian cumulative density functions. The latter approach is unique to the probit link function models and has been proposed for parameter estimation in complex, mixed effects models. However, it has not been investigated in which scenarios either form is preferable. Our simulations and data example show that neither form is preferable in general and give guidance on when to approximate the cumulative density functions and when to approximate the Gaussian weighted integrals and, in the case of the latter, which general purpose method to use among a large list of methods.

In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (2020), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.

Modern data collecting methods and computation tools have made it possible to monitor high-dimensional processes. In this article, Phase II monitoring of high-dimensional processes is investigated when the available number of samples collected in Phase I is limitted in comparison to the number of variables. A new charting statistic for high-dimensional multivariate processes based on the diagonal elements of the underlying covariance matrix is introduced and a unified procedure for Phase I and II by employing a self-starting control chart is proposed. To remedy the effect of outliers, we adopt a robust procedure for parameter estimation in Phase I and introduce the appropriate consistent estimators. The statistical performance of the proposed method is evaluated in Phase II through average run length (ARL) criterion in the absence and presence of outliers and reveals that the proposed control chart scheme effectively detects various kinds of shifts in the process mean. Finally, we illustrate the applicability of our proposed method via a real-world example.

Given an (optimal) dynamic treatment rule, it may be of interest to evaluate that rule -- that is, to ask the causal question: what is the expected outcome had every subject received treatment according to that rule? In this paper, we study the performance of estimators that approximate the true value of: 1) an $a$ $priori$ known dynamic treatment rule 2) the true, unknown optimal dynamic treatment rule (ODTR); 3) an estimated ODTR, a so-called "data-adaptive parameter," whose true value depends on the sample. Using simulations of point-treatment data, we specifically investigate: 1) the impact of increasingly data-adaptive estimation of nuisance parameters and/or of the ODTR on performance; 2) the potential for improved efficiency and bias reduction through the use of semiparametric efficient estimators; and, 3) the importance of sample splitting based on CV-TMLE for accurate inference. In the simulations considered, there was very little cost and many benefits to using the cross-validated targeted maximum likelihood estimator (CV-TMLE) to estimate the value of the true and estimated ODTR; importantly, and in contrast to non cross-validated estimators, the performance of CV-TMLE was maintained even when highly data-adaptive algorithms were used to estimate both nuisance parameters and the ODTR. In addition, we apply these estimators for the value of the rule to the "Interventions" Study, an ongoing randomized controlled trial, to identify whether assigning cognitive behavioral therapy (CBT) to criminal justice-involved adults with mental illness using an ODTR significantly reduces the probability of recidivism, compared to assigning CBT in a non-individualized way.

We consider the Bayesian analysis of models in which the unknown distribution of the outcomes is specified up to a set of conditional moment restrictions. The nonparametric exponentially tilted empirical likelihood function is constructed to satisfy a sequence of unconditional moments based on an increasing (in sample size) vector of approximating functions (such as tensor splines based on the splines of each conditioning variable). For any given sample size, results are robust to the number of expanded moments. We derive Bernstein-von Mises theorems for the behavior of the posterior distribution under both correct and incorrect specification of the conditional moments, subject to growth rate conditions (slower under misspecification) on the number of approximating functions. A large-sample theory for comparing different conditional moment models is also developed. The central result is that the marginal likelihood criterion selects the model that is less misspecified. We also introduce sparsity-based model search for high-dimensional conditioning variables, and provide efficient MCMC computations for high-dimensional parameters. Along with clarifying examples, the framework is illustrated with real-data applications to risk-factor determination in finance, and causal inference under conditional ignorability.

The language of information theory is favored in both causal reasoning and machine learning frameworks. But, is there a better language than this? In this study, we demonstrate the pitfalls of infotheoretic estimation using first order statistics on (short) sequences for causal learning. We recommend the use of data compression based approaches for causality testing since these make very little assumptions on data as opposed to infotheoretic measures, and are more robust to finite data length effects. We conclude with a discussion on the challenges posed in modeling the effects of conditioning process $X$ with another process $Y$ in causal machine learning. Specifically, conditioning can increase 'confusion' which can be difficult to model by classical information theory. A conscious causal agent creates new choices, decisions and meaning which poses huge challenges for AI.

We present an efficient low-rank approximation algorithm for non-negative tensors. The algorithm is derived from our two findings: First, we show that rank-1 approximation for tensors can be viewed as a mean-field approximation by treating each tensor as a probability distribution. Second, we theoretically provide a sufficient condition for distribution parameters to reduce Tucker ranks of tensors; interestingly, this sufficient condition can be achieved by iterative application of the mean-field approximation. Since the mean-field approximation is always given as a closed formula, our findings lead to a fast low-rank approximation algorithm without using a gradient method. We empirically demonstrate that our algorithm is faster than the existing non-negative Tucker rank reduction methods and achieves competitive or better approximation of given tensors.

We consider the task of learning the parameters of a {\em single} component of a mixture model, for the case when we are given {\em side information} about that component, we call this the "search problem" in mixture models. We would like to solve this with computational and sample complexity lower than solving the overall original problem, where one learns parameters of all components. Our main contributions are the development of a simple but general model for the notion of side information, and a corresponding simple matrix-based algorithm for solving the search problem in this general setting. We then specialize this model and algorithm to four common scenarios: Gaussian mixture models, LDA topic models, subspace clustering, and mixed linear regression. For each one of these we show that if (and only if) the side information is informative, we obtain parameter estimates with greater accuracy, and also improved computation complexity than existing moment based mixture model algorithms (e.g. tensor methods). We also illustrate several natural ways one can obtain such side information, for specific problem instances. Our experiments on real data sets (NY Times, Yelp, BSDS500) further demonstrate the practicality of our algorithms showing significant improvement in runtime and accuracy.

北京阿比特科技有限公司