亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a continuous-time nonlinear model of opinion dynamics with utility-maximizing agents connected via a social influence network. A distinguishing feature of the proposed model is the inclusion of an opinion-dependent resource-penalty term in the utilities, which limits the agents from holding opinions of large magnitude. The proposed utility functions also account for how the relative resources within the social group affect both an agent's stubbornness and social influence. Each agent myopically seeks to maximize its utility by revising its opinion in the gradient ascent direction of its utility function, thus leading to the proposed opinion dynamics. We show that, for any arbitrary social influence network, opinions are ultimately bounded. For networks with weak antagonistic relations, we show that there exists a globally exponentially stable equilibrium using contraction theory. We establish conditions for the existence of consensus equilibrium and analyze the relative dominance of the agents at consensus. We also conduct a game-theoretic analysis of the underlying opinion formation game, including on Nash equilibria and on prices of anarchy in terms of satisfaction ratios. Additionally, we also investigate the oscillatory behavior of opinions in a two-agent scenario. Finally, simulations illustrate our findings.

相關內容

Artificial neural networks used for reinforcement learning are structurally rigid, meaning that each optimized parameter of the network is tied to its specific placement in the network structure. It also means that a network only works with pre-defined and fixed input- and output sizes. This is a consequence of having the number of optimized parameters being directly dependent on the structure of the network. Structural rigidity limits the ability to optimize parameters of policies across multiple environments that do not share input and output spaces. Here, we evolve a set of neurons and plastic synapses each represented by a gated recurrent unit (GRU). During optimization, the parameters of these fundamental units of a neural network are optimized in different random structural configurations. Earlier work has shown that parameter sharing between units is important for making structurally flexible neurons We show that it is possible to optimize a set of distinct neuron- and synapse types allowing for a mitigation of the symmetry dilemma. We demonstrate this by optimizing a single set of neurons and synapses to solve multiple reinforcement learning control tasks simultaneously.

Unraveling the causal relationships among the execution of process activities is a crucial element in predicting the consequences of process interventions and making informed decisions regarding process improvements. Process discovery algorithms exploit time precedence as their main source of model derivation. Hence, a causal view can supplement process discovery, being a new perspective in which relations reflect genuine cause-effect dependencies among the tasks. This calls for faithful new techniques to discover the causal execution dependencies among the tasks in the process. To this end, our work offers a systematic approach to the unveiling of the causal business process by leveraging an existing causal discovery algorithm over activity timing. In addition, this work delves into a set of conditions under which process mining discovery algorithms generate a model that is incongruent with the causal business process model, and shows how the latter model can be methodologically employed for a sound analysis of the process. Our methodology searches for such discrepancies between the two models in the context of three causal patterns, and derives a new view in which these inconsistencies are annotated over the mined process model. We demonstrate our methodology employing two open process mining algorithms, the IBM Process Mining tool, and the LiNGAM causal discovery technique. We apply it on a synthesized dataset and on two open benchmark data sets.

We investigate the complexity of deep neural networks through the lens of functional equivalence, which posits that different parameterizations can yield the same network function. Leveraging the equivalence property, we present a novel bound on the covering number for deep neural networks, which reveals that the complexity of neural networks can be reduced. Additionally, we demonstrate that functional equivalence benefits optimization, as overparameterized networks tend to be easier to train since increasing network width leads to a diminishing volume of the effective parameter space. These findings can offer valuable insights into the phenomenon of overparameterization and have implications for understanding generalization and optimization in deep learning.

According to many researchers, conceptual model (CM) development is a hard task, and system requirements are difficult to collect, causing many miscommunication problems. CMs require more than modeling ability alone - they first require an understanding of the targeted domain that the model attempts to represent. Accordingly, a preconceptual modeling (pre-CM) stage is intended to address ontological issues before typical CM development is initiated. It involves defining a portion of reality when entities and processes are differentiated and integrated as unified wholes. This pre-CM phase forms the focus of research in this paper. The purpose is not show how to model; rather, it is to demonstrate how to establish a metaphysical basis of the involved portion of reality. To demonstrate such a venture, we employ the so-called thinging machine (TM) modeling that has been proposed as a high-level CM. A TM model integrates staticity and dynamism grounded in a fundamental construct called a thimac (things/machine). It involves two modes of reality, existence (events) and subsistence (regions - roughly, specifications of things and processes). Currently, the dominant approach in CM has evolved to limit its scope of application to develop ontological categorization (types of things). In the TM approach, pre-CM metaphysics is viewed as a part and parcel of CM itself. The general research problem is how to map TM constructs to what is out there in the targeted domain. Discussions involve the nature of thimacs (things and processes) and subsistence and existence as they are superimposed over each other in reality. Specifically, we make two claims, (a) the perceptibility of regions as a phenomenon and (b) the distinctiveness of existence as a construct for events. The results contribute to further the understanding of TM modeling in addition to introducing some metaphysical insights.

State estimation of nonlinear dynamical systems has long aimed to balance accuracy, computational efficiency, robustness, and reliability. The rapid evolution of various industries has amplified the demand for estimation frameworks that satisfy all these factors. This study introduces a neuromorphic approach for robust filtering of nonlinear dynamical systems: SNN-EMSIF (spiking neural network-extended modified sliding innovation filter). SNN-EMSIF combines the computational efficiency and scalability of SNNs with the robustness of EMSIF, an estimation framework designed for nonlinear systems with zero-mean Gaussian noise. Notably, the weight matrices are designed according to the system model, eliminating the need for a learning process. The framework's efficacy is evaluated through comprehensive Monte Carlo simulations, comparing SNN-EMSIF with EKF and EMSIF. Additionally, it is compared with SNN-EKF in the presence of modeling uncertainties and neuron loss, using RMSEs as a metric. The results demonstrate the superior accuracy and robustness of SNN-EMSIF. Further analysis of runtimes and spiking patterns reveals an impressive reduction of 85% in emitted spikes compared to possible spikes, highlighting the computational efficiency of SNN-EMSIF. This framework offers a promising solution for robust estimation in nonlinear dynamical systems, opening new avenues for efficient and reliable estimation in various industries that can benefit from neuromorphic computing.

As organizations face the challenges of processing exponentially growing data volumes, their reliance on analytics to unlock value from this data has intensified. However, the intricacies of big data, such as its extensive feature sets, pose significant challenges. A crucial step in leveraging this data for insightful analysis is an in-depth understanding of both the data and its domain. Yet, existing literature presents a fragmented picture of what comprises an effective understanding of data and domain, varying significantly in depth and focus. To address this research gap, we conduct a systematic literature review, aiming to delineate the dimensions of data understanding. We identify five dimensions: Foundations, Collection & Selection, Contextualization & Integration, Exploration & Discovery, and Insights. These dimensions collectively form a comprehensive framework for data understanding, providing guidance for organizations seeking meaningful insights from complex datasets. This study synthesizes the current state of knowledge and lays the groundwork for further exploration.

We introduce the paradigm of validated decentralized learning for undirected networks with heterogeneous data and possible adversarial infiltration. We require (a) convergence to a global empirical loss minimizer when adversaries are absent, and (b) either detection of adversarial presence of convergence to an admissible consensus irrespective of the adversarial configuration. To this end, we propose the VALID protocol which, to the best of our knowledge, is the first to achieve a validated learning guarantee. Moreover, VALID offers an O(1/T) convergence rate (under pertinent regularity assumptions), and computational and communication complexities comparable to non-adversarial distributed stochastic gradient descent. Remarkably, VALID retains optimal performance metrics in adversary-free environments, sidestepping the robustness penalties observed in prior byzantine-robust methods. A distinctive aspect of our study is a heterogeneity metric based on the norms of individual agents' gradients computed at the global empirical loss minimizer. This not only provides a natural statistic for detecting significant byzantine disruptions but also allows us to prove the optimality of VALID in wide generality. Lastly, our numerical results reveal that, in the absence of adversaries, VALID converges faster than state-of-the-art byzantine robust algorithms, while when adversaries are present, VALID terminates with each honest either converging to an admissible consensus of declaring adversarial presence in the network.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

We propose a novel attention gate (AG) model for medical imaging that automatically learns to focus on target structures of varying shapes and sizes. Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while highlighting salient features useful for a specific task. This enables us to eliminate the necessity of using explicit external tissue/organ localisation modules of cascaded convolutional neural networks (CNNs). AGs can be easily integrated into standard CNN architectures such as the U-Net model with minimal computational overhead while increasing the model sensitivity and prediction accuracy. The proposed Attention U-Net architecture is evaluated on two large CT abdominal datasets for multi-class image segmentation. Experimental results show that AGs consistently improve the prediction performance of U-Net across different datasets and training sizes while preserving computational efficiency. The code for the proposed architecture is publicly available.

北京阿比特科技有限公司