亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Fair Principal Component Analysis (PCA) is a problem setting where we aim to perform PCA while making the resulting representation fair in that the projected distributions, conditional on the sensitive attributes, match one another. However, existing approaches to fair PCA have two main problems: theoretically, there has been no statistical foundation of fair PCA in terms of learnability; practically, limited memory prevents us from using existing approaches, as they explicitly rely on full access to the entire data. On the theoretical side, we rigorously formulate fair PCA using a new notion called \emph{probably approximately fair and optimal} (PAFO) learnability. On the practical side, motivated by recent advances in streaming algorithms for addressing memory limitation, we propose a new setting called \emph{fair streaming PCA} along with a memory-efficient algorithm, fair noisy power method (FNPM). We then provide its {\it statistical} guarantee in terms of PAFO-learnability, which is the first of its kind in fair PCA literature. Lastly, we verify the efficacy and memory efficiency of our algorithm on real-world datasets.

相關內容

在統計中(zhong)(zhong),主成分(fen)分(fen)析(PCA)是一種通過(guo)最(zui)大化每個(ge)(ge)維(wei)(wei)(wei)度(du)的(de)(de)(de)方(fang)差來(lai)將(jiang)(jiang)較(jiao)高維(wei)(wei)(wei)度(du)空(kong)間中(zhong)(zhong)的(de)(de)(de)數據投(tou)影到(dao)較(jiao)低(di)維(wei)(wei)(wei)度(du)空(kong)間中(zhong)(zhong)的(de)(de)(de)方(fang)法(fa)。給定二維(wei)(wei)(wei),三維(wei)(wei)(wei)或(huo)更高維(wei)(wei)(wei)空(kong)間中(zhong)(zhong)的(de)(de)(de)點集合(he),可以(yi)將(jiang)(jiang)“最(zui)佳擬合(he)”線(xian)定義為最(zui)小(xiao)化從點到(dao)線(xian)的(de)(de)(de)平(ping)均平(ping)方(fang)距(ju)離的(de)(de)(de)線(xian)。可以(yi)從垂直于(yu)第一條直線(xian)的(de)(de)(de)方(fang)向類似地選擇下一條最(zui)佳擬合(he)線(xian)。重復(fu)此過(guo)程會產生一個(ge)(ge)正交的(de)(de)(de)基礎,其中(zhong)(zhong)數據的(de)(de)(de)不(bu)同單個(ge)(ge)維(wei)(wei)(wei)度(du)是不(bu)相關(guan)的(de)(de)(de)。 這些基向量稱為主成分(fen)。

Due to the omnipresence of Neural Radiance Fields (NeRFs), the interest towards editable implicit 3D representations has surged over the last years. However, editing implicit or hybrid representations as used for NeRFs is difficult due to the entanglement of appearance and geometry encoded in the model parameters. Despite these challenges, recent research has shown first promising steps towards photorealistic and non-photorealistic appearance edits. The main open issues of related work include limited interactivity, a lack of support for local edits and large memory requirements, rendering them less useful in practice. We address these limitations with LAENeRF, a unified framework for photorealistic and non-photorealistic appearance editing of NeRFs. To tackle local editing, we leverage a voxel grid as starting point for region selection. We learn a mapping from expected ray terminations to final output color, which can optionally be supervised by a style loss, resulting in a framework which can perform photorealistic and non-photorealistic appearance editing of selected regions. Relying on a single point per ray for our mapping, we limit memory requirements and enable fast optimization. To guarantee interactivity, we compose the output color using a set of learned, modifiable base colors, composed with additive layer mixing. Compared to concurrent work, LAENeRF enables recoloring and stylization while keeping processing time low. Furthermore, we demonstrate that our approach surpasses baseline methods both quantitatively and qualitatively.

Modeling and prediction of epidemic spread are critical to assist in policy-making for mitigation. Therefore, we present a new method based on Gaussian Process Regression to model and predict epidemics, and it quantifies prediction confidence through variance and high probability error bounds. Gaussian Process Regression excels in using small datasets and providing uncertainty bounds, and both of these properties are critical in modeling and predicting epidemic spreading processes with limited data. However, the derivation of formal uncertainty bounds remains lacking when using Gaussian Process Regression in the setting of epidemics, which limits its usefulness in guiding mitigation efforts. Therefore, in this work, we develop a novel bound on the variance of the prediction that quantifies the impact of the epidemic data on the predictions we make. Further, we develop a high probability error bound on the prediction, and we quantify how the epidemic spread, the infection data, and the length of the prediction horizon all affect this error bound. We also show that the error stays below a certain threshold based on the length of the prediction horizon. To illustrate this framework, we leverage Gaussian Process Regression to model and predict COVID-19 using real-world infection data from the United Kingdom.

3D simulated environments play a critical role in Embodied AI, but their creation requires expertise and extensive manual effort, restricting their diversity and scope. To mitigate this limitation, we present Holodeck, a system that generates 3D environments to match a user-supplied prompt fully automatedly. Holodeck can generate diverse scenes, e.g., arcades, spas, and museums, adjust the designs for styles, and can capture the semantics of complex queries such as "apartment for a researcher with a cat" and "office of a professor who is a fan of Star Wars". Holodeck leverages a large language model (GPT-4) for common sense knowledge about what the scene might look like and uses a large collection of 3D assets from Objaverse to populate the scene with diverse objects. To address the challenge of positioning objects correctly, we prompt GPT-4 to generate spatial relational constraints between objects and then optimize the layout to satisfy those constraints. Our large-scale human evaluation shows that annotators prefer Holodeck over manually designed procedural baselines in residential scenes and that Holodeck can produce high-quality outputs for diverse scene types. We also demonstrate an exciting application of Holodeck in Embodied AI, training agents to navigate in novel scenes like music rooms and daycares without human-constructed data, which is a significant step forward in developing general-purpose embodied agents.

The Spatial Pattern Matching (SPM) query allows for the retrieval of Points of Interest (POIs) based on spatial patterns defined by keywords and distance criteria. However, it does not consider the connectivity between POIs. In this study, we introduce the Qualitative and Quantitative Spatial Pattern Matching (QQ-SPM) query, an extension of the SPM query that incorporates qualitative connectivity constraints. To answer the proposed query type, we propose the QQESPM algorithm, which adapts the state-of-the-art ESPM algorithm to handle connectivity constraints. Performance tests comparing QQESPM to a baseline approach demonstrate QQESPM's superiority in addressing the proposed query type.

Diabetic Retinopathy (DR) is a prevalent illness associated with Diabetes which, if left untreated, can result in irreversible blindness. Deep Learning based systems are gradually being introduced as automated support for clinical diagnosis. Since healthcare has always been an extremely important domain demanding error-free performance, any adversaries could pose a big threat to the applicability of such systems. In this work, we use Universal Adversarial Perturbations (UAPs) to quantify the vulnerability of Medical Deep Neural Networks (DNNs) for detecting DR. To the best of our knowledge, this is the very first attempt that works on attacking complete fine-grained classification of DR images using various UAPs. Also, as a part of this work, we use UAPs to fine-tune the trained models to defend against adversarial samples. We experiment on several models and observe that the performance of such models towards unseen adversarial attacks gets boosted on average by $3.41$ Cohen-kappa value and maximum by $31.92$ Cohen-kappa value. The performance degradation on normal data upon ensembling the fine-tuned models was found to be statistically insignificant using t-test, highlighting the benefits of UAP-based adversarial fine-tuning.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

We present CoDEx, a set of knowledge graph completion datasets extracted from Wikidata and Wikipedia that improve upon existing knowledge graph completion benchmarks in scope and level of difficulty. In terms of scope, CoDEx comprises three knowledge graphs varying in size and structure, multilingual descriptions of entities and relations, and tens of thousands of hard negative triples that are plausible but verified to be false. To characterize CoDEx, we contribute thorough empirical analyses and benchmarking experiments. First, we analyze each CoDEx dataset in terms of logical relation patterns. Next, we report baseline link prediction and triple classification results on CoDEx for five extensively tuned embedding models. Finally, we differentiate CoDEx from the popular FB15K-237 knowledge graph completion dataset by showing that CoDEx covers more diverse and interpretable content, and is a more difficult link prediction benchmark. Data, code, and pretrained models are available at //bit.ly/2EPbrJs.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why -- they not only provide the user with the recommendations, but also make the user aware why such items are recommended by generating recommendation explanations, which help to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommender systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first high-light the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a chapter to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.

北京阿比特科技有限公司