Driving Automation Systems (DAS) are subject to complex road environments and vehicle behaviors and increasingly rely on sophisticated sensors and Artificial Intelligence (AI). These properties give rise to unique safety faults stemming from specification insufficiencies and technological performance limitations, where sensors and AI introduce errors that vary in magnitude and temporal patterns, posing potential safety risks. The Safety of the Intended Functionality (SOTIF) standard emerges as a promising framework for addressing these concerns, focusing on scenario-based analysis to identify hazardous behaviors and their causes. Although the current standard provides a basic cause-and-effect model and high-level process guidance, it lacks concepts required to identify and evaluate hazardous errors, especially within the context of AI. This paper introduces two key contributions to bridge this gap. First, it defines the SOTIF Temporal Error and Failure Model (STEAM) as a refinement of the SOTIF cause-and-effect model, offering a comprehensive system-design perspective. STEAM refines error definitions, introduces error sequences, and classifies them as error sequence patterns, providing particular relevance to systems employing advanced sensors and AI. Second, this paper proposes the Model-based SOTIF Analysis of Failures and Errors (MoSAFE) method, which allows instantiating STEAM based on system-design models by deriving hazardous error sequence patterns at module level from hazardous behaviors at vehicle level via weakest precondition reasoning. Finally, the paper presents a case study centered on an automated speed-control feature, illustrating the practical applicability of the refined model and the MoSAFE method in addressing complex safety challenges in DAS.
The rapid evolution of Vehicular Ad-hoc NETworks (VANETs) has ushered in a transformative era for intelligent transportation systems (ITS), significantly enhancing road safety and vehicular communication. However, the intricate and dynamic nature of VANETs presents formidable challenges, particularly in vehicle-to-infrastructure (V2I) communications. Roadside Units (RSUs), integral components of VANETs, are increasingly susceptible to cyberattacks, such as jamming and distributed denial-of-service (DDoS) attacks. These vulnerabilities pose grave risks to road safety, potentially leading to traffic congestion and vehicle malfunctions. Current approaches often struggle to effectively merge digital twin technology with Artificial Intelligence (AI) models to boost security and sustainability. Our study introduces an innovative cyber-twin framework tailored to enhance the security of RSUs in VANETs. This framework uniquely combines digital twin technology with cutting-edge AI to offer a real-time, dynamic representation of RSUs. This allows for detailed monitoring and efficient detection of threats, significantly strengthening RSU security in VANETs. Moreover, our framework makes a notable contribution to eco-friendly communication by improving the computational efficiency of RSUs, leading to increased energy efficiency and extended hardware durability. Our results show a considerable enhancement in resource management and attack detection, surpassing the performance of existing solutions. In particular, the cyber-twin framework showed a substantial reduction in RSU load and an optimal balance between resource consumption and high attack detection efficiency, with a defined twinning rate range of seventy-six to ninety per cent. These advancements underscore our commitment to developing sustainable, secure, and resilient vehicular communication systems for the future of smart cities.
Dynamic Occupancy Grid Mapping is a technique used to generate a local map of the environment containing both static and dynamic information. Typically, these maps are primarily generated using lidar measurements. However, with improvements in radar sensing, resulting in better accuracy and higher resolution, radar is emerging as a viable alternative to lidar as the primary sensor for mapping. In this paper, we propose a radar-centric dynamic occupancy grid mapping algorithm with adaptations to the state computation, inverse sensor model, and field-of-view computation tailored to the specifics of radar measurements. We extensively evaluate our approach using real data to demonstrate its effectiveness and establish the first benchmark for radar-based dynamic occupancy grid mapping using the publicly available Radarscenes dataset.
The emergence of Multimodal Large Language Models ((M)LLMs) has ushered in new avenues in artificial intelligence, particularly for autonomous driving by offering enhanced understanding and reasoning capabilities. This paper introduces LimSim++, an extended version of LimSim designed for the application of (M)LLMs in autonomous driving. Acknowledging the limitations of existing simulation platforms, LimSim++ addresses the need for a long-term closed-loop infrastructure supporting continuous learning and improved generalization in autonomous driving. The platform offers extended-duration, multi-scenario simulations, providing crucial information for (M)LLM-driven vehicles. Users can engage in prompt engineering, model evaluation, and framework enhancement, making LimSim++ a versatile tool for research and practice. This paper additionally introduces a baseline (M)LLM-driven framework, systematically validated through quantitative experiments across diverse scenarios. The open-source resources of LimSim++ are available at: //pjlab-adg.github.io/limsim_plus/.
The effectiveness of Intrusion Detection Systems (IDS) is critical in an era where cyber threats are becoming increasingly complex. Machine learning (ML) and deep learning (DL) models provide an efficient and accurate solution for identifying attacks and anomalies in computer networks. However, using ML and DL models in IDS has led to a trust deficit due to their non-transparent decision-making. This transparency gap in IDS research is significant, affecting confidence and accountability. To address, this paper introduces a novel Explainable IDS approach, called X-CBA, that leverages the structural advantages of Graph Neural Networks (GNNs) to effectively process network traffic data, while also adapting a new Explainable AI (XAI) methodology. Unlike most GNN-based IDS that depend on labeled network traffic and node features, thereby overlooking critical packet-level information, our approach leverages a broader range of traffic data through network flows, including edge attributes, to improve detection capabilities and adapt to novel threats. Through empirical testing, we establish that our approach not only achieves high accuracy with 99.47% in threat detection but also advances the field by providing clear, actionable explanations of its analytical outcomes. This research also aims to bridge the current gap and facilitate the broader integration of ML/DL technologies in cybersecurity defenses by offering a local and global explainability solution that is both precise and interpretable.
In patent prosecution, timely and effective responses to Office Actions (OAs) are crucial for acquiring patents, yet past automation and AI research have scarcely addressed this aspect. To address this gap, our study introduces the Patent Office Action Response Intelligence System (PARIS) and its advanced version, the Large Language Model Enhanced PARIS (LE-PARIS). These systems are designed to expedite the efficiency of patent attorneys in collaboratively handling OA responses. The systems' key features include the construction of an OA Topics Database, development of Response Templates, and implementation of Recommender Systems and LLM-based Response Generation. Our validation involves a multi-paradigmatic analysis using the USPTO Office Action database and longitudinal data of attorney interactions with our systems over six years. Through five studies, we examine the constructiveness of OA topics (studies 1 and 2) using topic modeling and the proposed Delphi process, the efficacy of our proposed hybrid recommender system tailored for OA (both LLM-based and non-LLM-based) (study 3), the quality of response generation (study 4), and the practical value of the systems in real-world scenarios via user studies (study 5). Results demonstrate that both PARIS and LE-PARIS significantly meet key metrics and positively impact attorney performance.
In recent years, autonomous driving has garnered significant attention due to its potential for improving road safety through collaborative perception among connected and autonomous vehicles (CAVs). However, time-varying channel variations in vehicular transmission environments demand dynamic allocation of communication resources. Moreover, in the context of collaborative perception, it is important to recognize that not all CAVs contribute valuable data, and some CAV data even have detrimental effects on collaborative perception. In this paper, we introduce SmartCooper, an adaptive collaborative perception framework that incorporates communication optimization and a judger mechanism to facilitate CAV data fusion. Our approach begins with optimizing the connectivity of vehicles while considering communication constraints. We then train a learnable encoder to dynamically adjust the compression ratio based on the channel state information (CSI). Subsequently, we devise a judger mechanism to filter the detrimental image data reconstructed by adaptive decoders. We evaluate the effectiveness of our proposed algorithm on the OpenCOOD platform. Our results demonstrate a substantial reduction in communication costs by 23.10\% compared to the non-judger scheme. Additionally, we achieve a significant improvement on the average precision of Intersection over Union (AP@IoU) by 7.15\% compared with state-of-the-art schemes.
Over the past years, Machine Learning-as-a-Service (MLaaS) has received a surging demand for supporting Machine Learning-driven services to offer revolutionized user experience across diverse application areas. MLaaS provides inference service with low inference latency based on an ML model trained using a dataset collected from numerous individual data owners. Recently, for the sake of data owners' privacy and to comply with the "right to be forgotten (RTBF)" as enacted by data protection legislation, many machine unlearning methods have been proposed to remove data owners' data from trained models upon their unlearning requests. However, despite their promising efficiency, almost all existing machine unlearning methods handle unlearning requests independently from inference requests, which unfortunately introduces a new security issue of inference service obsolescence and a privacy vulnerability of undesirable exposure for machine unlearning in MLaaS. In this paper, we propose the ERASER framework for machinE unleaRning in MLaAS via an inferencE seRving-aware approach. ERASER strategically choose appropriate unlearning execution timing to address the inference service obsolescence issue. A novel inference consistency certification mechanism is proposed to avoid the violation of RTBF principle caused by postponed unlearning executions, thereby mitigating the undesirable exposure vulnerability. ERASER offers three groups of design choices to allow for tailor-made variants that best suit the specific environments and preferences of various MLaaS systems. Extensive empirical evaluations across various settings confirm ERASER's effectiveness, e.g., it can effectively save up to 99% of inference latency and 31% of computation overhead over the inference-oblivion baseline.
This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.
Signalized intersections in arterial roads result in persistent vehicle idling and excess accelerations, contributing to fuel consumption and CO2 emissions. There has thus been a line of work studying eco-driving control strategies to reduce fuel consumption and emission levels at intersections. However, methods to devise effective control strategies across a variety of traffic settings remain elusive. In this paper, we propose a reinforcement learning (RL) approach to learn effective eco-driving control strategies. We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time and compare with naturalistic driving and model-based baselines. We further demonstrate the generalizability of the learned policies under mixed traffic scenarios. Simulation results indicate that scenarios with 100% penetration of connected autonomous vehicles (CAV) may yield as high as 18% reduction in fuel consumption and 25% reduction in CO2 emission levels while even improving travel speed by 20%. Furthermore, results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.