亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Real-time planning for a combined problem of target assignment and path planning for multiple agents, also known as the unlabeled version of Multi-Agent Path Finding (MAPF), is crucial for high-level coordination in multi-agent systems, e.g., pattern formation by robot swarms. This paper studies two aspects of unlabeled-MAPF: (1) offline scenario: solving large instances by centralized approaches with small computation time, and (2) online scenario: executing unlabeled-MAPF despite timing uncertainties of real robots. For this purpose, we propose TSWAP, a novel complete algorithm consisting of target assignment with lazy evaluation and path planning with target swapping. TSWAP can adapt to both offline and online scenarios. We empirically demonstrate that Offline TSWAP is highly scalable; providing near-optimal solutions while reducing runtime by orders of magnitude compared to existing approaches. In addition, we present the benefits of Online TSWAP, such as delay tolerance, through real-robot demos.

相關內容

An important capability of autonomous Unmanned Aerial Vehicles (UAVs) is autonomous landing while avoiding collision with obstacles in the process. Such capability requires real-time local trajectory planning. Although trajectory-planning methods have been introduced for cases such as emergency landing, they have not been evaluated in real-life scenarios where only the surface of obstacles can be sensed and detected. We propose a novel optimization framework using a pre-planned global path and a priority map of the landing area. Several trajectory planning algorithms were implemented and evaluated in a simulator that includes a 3D urban environment, LiDAR-based obstacle-surface sensing and UAV guidance and dynamics. We show that using our proposed optimization criterion can successfully improve the landing-mission success probability while avoiding collisions with obstacles in real-time.

The sampling-based motion planning algorithms can solve the motion planning problem in high-dimensional state space efficiently. This article presents a novel approach to sample in the promising region and reduce planning time remarkably. The RRT# defines the Relevant Region according to the cost-to-come provided by the optimal forward-searching tree; however, it takes the cumulative cost of a direct connection between the current state and the goal state as the cost-to-go. We propose a batch sampling method that samples in the refined Relevant Region, which is defined according to the optimal cost-to-come and the adaptive cost-to-go. In our method, the cost-to-come and the cost-to-go of a specific vertex are estimated by the valid optimal forward-searching tree and the lazy reverse-searching tree, respectively. New samples are generated with a direct sampling method, which can take advantage of the heuristic estimation result. We carry on several simulations in both SE(2) and SE(3) state spaces to validate the effectiveness of our method. Simulation results demonstrate that the proposed algorithm can find a better initial solution and consumes less planning time than related work.

Membrane computing is a branch of natural computingwhich abstracts fromthe structure and the functioning of living cells. The computation models obtained in the field of membrane computing are usually called P systems. P systems have been used to solve computationally hard problems efficiently on the assumption that the execution of each rule is completed in exactly one time-unit (a global clock is assumed for timing and synchronizing the execution of rules). However, in biological reality, different biological processes take different times to be completed, which can also be influenced by many environmental factors. In this work, with this biological reality, we give a time-free solution to independent set problemusing P systems with active membranes, which solve the problem independent of the execution time of the involved rules.

We study a general Markov game with metric switching costs: in each round, the player adaptively chooses one of several Markov chains to advance with the objective of minimizing the expected cost for at least $k$ chains to reach their target states. If the player decides to play a different chain, an additional switching cost is incurred. The special case in which there is no switching cost was solved optimally by Dumitriu, Tetali, and Winkler~\cite{DTW03} by a variant of the celebrated Gittins Index for the classical multi-armed bandit (MAB) problem with Markovian rewards \cite{Git74,Git79}. However, for Markovian multi-armed bandit with nontrivial switching cost, even if the switching cost is a constant, the classic paper by Banks and Sundaram \cite{BS94} showed that no index strategy can be optimal. In this paper, we complement their result and show there is a simple index strategy that achieves a constant approximation factor if the switching cost is constant and $k=1$. To the best of our knowledge, this index strategy is the first strategy that achieves a constant approximation factor for a general Markovian MAB variant with switching costs. For the general metric, we propose a more involved constant-factor approximation algorithm, via a nontrivial reduction to the stochastic $k$-TSP problem, in which a Markov chain is approximated by a random variable. Our analysis makes extensive use of various interesting properties of the Gittins index.

This paper focuses on camouflaged object detection (COD), which is a task to detect objects hidden in the background. Most of the current COD models aim to highlight the target object directly while outputting ambiguous camouflaged boundaries. On the other hand, the performance of the models considering edge information is not yet satisfactory. To this end, we propose a new framework that makes full use of multiple visual cues, i.e., saliency as well as edges, to refine the predicted camouflaged map. This framework consists of three key components, i.e., a pseudo-edge generator, a pseudo-map generator, and an uncertainty-aware refinement module. In particular, the pseudo-edge generator estimates the boundary that outputs the pseudo-edge label, and the conventional COD method serves as the pseudo-map generator that outputs the pseudo-map label. Then, we propose an uncertainty-based module to reduce the uncertainty and noise of such two pseudo labels, which takes both pseudo labels as input and outputs an edge-accurate camouflaged map. Experiments on various COD datasets demonstrate the effectiveness of our method with superior performance to the existing state-of-the-art methods.

Multi-agent Pickup and Delivery (MAPD) is a challenging industrial problem where a team of robots is tasked with transporting a set of tasks, each from an initial location and each to a specified target location. Appearing in the context of automated warehouse logistics and automated mail sortation, MAPD requires first deciding which robot is assigned what task (i.e., Task Assignment or TA) followed by a subsequent coordination problem where each robot must be assigned collision-free paths so as to successfully complete its assignment (i.e., Multi-Agent Path Finding or MAPF). Leading methods in this area solve MAPD sequentially: first assigning tasks, then assigning paths. In this work we propose a new coupled method where task assignment choices are informed by actual delivery costs instead of by lower-bound estimates. The main ingredients of our approach are a marginal-cost assignment heuristic and a meta-heuristic improvement strategy based on Large Neighbourhood Search. As a further contribution, we also consider a variant of the MAPD problem where each robot can carry multiple tasks instead of just one. Numerical simulations show that our approach yields efficient and timely solutions and we report significant improvement compared with other recent methods from the literature.

This paper presents a novel method to generate spatial constraints for motion planning in dynamic environments. Motion planning methods for autonomous driving and mobile robots typically need to rely on the spatial constraints imposed by a map-based global planner to generate a collision-free trajectory. These methods may fail without an offline map or where the map is invalid due to dynamic changes in the environment such as road obstruction, construction, and traffic congestion. To address this problem, triangulation-based methods can be used to obtain a spatial constraint. However, the existing methods fall short when dealing with dynamic environments and may lead the motion planner to an unrecoverable state. In this paper, we propose a new method to generate a sequence of channels across different triangulation mesh topologies to serve as the spatial constraints. This can be applied to motion planning of autonomous vehicles or robots in cluttered, unstructured environments. The proposed method is evaluated and compared with other triangulation-based methods in synthetic and complex scenarios collected from a real-world autonomous driving dataset. We have shown that the proposed method results in a more stable, long-term plan with a higher task completion rate, faster arrival time, a higher rate of successful plans, and fewer collisions compared to existing methods.

We present Neural A*, a novel data-driven search method for path planning problems. Despite the recent increasing attention to data-driven path planning, a machine learning approach to search-based planning is still challenging due to the discrete nature of search algorithms. In this work, we reformulate a canonical A* search algorithm to be differentiable and couple it with a convolutional encoder to form an end-to-end trainable neural network planner. Neural A* solves a path planning problem by encoding a problem instance to a guidance map and then performing the differentiable A* search with the guidance map. By learning to match the search results with ground-truth paths provided by experts, Neural A* can produce a path consistent with the ground truth accurately and efficiently. Our extensive experiments confirmed that Neural A* outperformed state-of-the-art data-driven planners in terms of the search optimality and efficiency trade-off, and furthermore, successfully predicted realistic human trajectories by directly performing search-based planning on natural image inputs.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

We propose an algorithm for real-time 6DOF pose tracking of rigid 3D objects using a monocular RGB camera. The key idea is to derive a region-based cost function using temporally consistent local color histograms. While such region-based cost functions are commonly optimized using first-order gradient descent techniques, we systematically derive a Gauss-Newton optimization scheme which gives rise to drastically faster convergence and highly accurate and robust tracking performance. We furthermore propose a novel complex dataset dedicated for the task of monocular object pose tracking and make it publicly available to the community. To our knowledge, It is the first to address the common and important scenario in which both the camera as well as the objects are moving simultaneously in cluttered scenes. In numerous experiments - including our own proposed data set - we demonstrate that the proposed Gauss-Newton approach outperforms existing approaches, in particular in the presence of cluttered backgrounds, heterogeneous objects and partial occlusions.

北京阿比特科技有限公司