We introduce a new benchmarking suite for high-dimensional control, targeted at testing high spatial and temporal precision, coordination, and planning, all with an underactuated system frequently making-and-breaking contacts. The proposed challenge is mastering the piano through bi-manual dexterity, using a pair of simulated anthropomorphic robot hands. We call it RoboPianist, and the initial version covers a broad set of 150 variable-difficulty songs. We investigate both model-free and model-based methods on the benchmark, characterizing their performance envelopes. We observe that while certain existing methods, when well-tuned, can achieve impressive levels of performance in certain aspects, there is significant room for improvement. RoboPianist provides a rich quantitative benchmarking environment, with human-interpretable results, high ease of expansion by simply augmenting the repertoire with new songs, and opportunities for further research, including in multi-task learning, zero-shot generalization, multimodal (sound, vision, touch) learning, and imitation. Supplementary information, including videos of our control policies, can be found at //kzakka.com/robopianist/
Accurately quantifying and removing submerged underwater waste plays a crucial role in safeguarding marine life and preserving the environment. While detecting floating and surface debris is relatively straightforward, quantifying submerged waste presents significant challenges due to factors like light refraction, absorption, suspended particles, and color distortion. This paper addresses these challenges by proposing the development of a custom dataset and an efficient detection approach for submerged marine debris. The dataset encompasses diverse underwater environments and incorporates annotations for precise labeling of debris instances. Ultimately, the primary objective of this custom dataset is to enhance the diversity of litter instances and improve their detection accuracy in deep submerged environments by leveraging state-of-the-art deep learning architectures.
Using turn signals to convey a driver's intention to change lanes provides a direct and unambiguous way of communicating with nearby drivers. Nonetheless, past research has indicated that drivers may not always use their turn signals prior to starting a lane change. In this study, we analyze realistic driving data to investigate turn signal usage during lane changes on highways in and around Gothenburg, Sweden. We examine turn signal usage and identify factors that have an influence on it by employing Bayesian hierarchical modelling (BHM). The results showed that a turn signal was used in approximately 60% of cases before starting a lane change, while it was only used after the start of a lane change in 33% of cases. In 7% of cases, a turn signal was not used at all. Additionally, the BHM results reveal that various factors influence turn signal usage. The study concludes that understanding the factors that affect turn signal usage is crucial for improving traffic safety through policy-making and designing algorithms for autonomous vehicles for future mixed traffic.
Existing heterogeneous treatment effects learners, also known as conditional average treatment effects (CATE) learners, lack a general mechanism for end-to-end inter-treatment information sharing, and data have to be split among potential outcome functions to train CATE learners which can lead to biased estimates with limited observational datasets. To address this issue, we propose a novel deep learning-based framework to train CATE learners that facilitates dynamic end-to-end information sharing among treatment groups. The framework is based on \textit{soft weight sharing} of \textit{hypernetworks}, which offers advantages such as parameter efficiency, faster training, and improved results. The proposed framework complements existing CATE learners and introduces a new class of uncertainty-aware CATE learners that we refer to as \textit{HyperCATE}. We develop HyperCATE versions of commonly used CATE learners and evaluate them on IHDP, ACIC-2016, and Twins benchmarks. Our experimental results show that the proposed framework improves the CATE estimation error via counterfactual inference, with increasing effectiveness for smaller datasets.
Motion prediction is essential for safe and efficient autonomous driving. However, the inexplicability and uncertainty of complex artificial intelligence models may lead to unpredictable failures of the motion prediction module, which may mislead the system to make unsafe decisions. Therefore, it is necessary to develop methods to guarantee reliable autonomous driving, where failure detection is a potential direction. Uncertainty estimates can be used to quantify the degree of confidence a model has in its predictions and may be valuable for failure detection. We propose a framework of failure detection for motion prediction from the uncertainty perspective, considering both motion uncertainty and model uncertainty, and formulate various uncertainty scores according to different prediction stages. The proposed approach is evaluated based on different motion prediction algorithms, uncertainty estimation methods, uncertainty scores, etc., and the results show that uncertainty is promising for failure detection for motion prediction but should be used with caution.
This paper presents a method for optimizing wireless networks by adjusting cell parameters that affect both the performance of the cell being optimized and the surrounding cells. The method uses multiple reinforcement learning agents that share a common policy and take into account information from neighboring cells to determine the state and reward. In order to avoid impairing network performance during the initial stages of learning, agents are pre-trained in an earlier phase of offline learning. During this phase, an initial policy is obtained using feedback from a static network simulator and considering a wide variety of scenarios. Finally, agents can intelligently tune the cell parameters of a test network by suggesting small incremental changes, slowly guiding the network toward an optimal configuration. The agents propose optimal changes using the experience gained with the simulator in the pre-training phase, but they can also continue to learn from current network readings after each change. The results show how the proposed approach significantly improves the performance gains already provided by expert system-based methods when applied to remote antenna tilt optimization. The significant gains of this approach have truly been observed when compared with a similar method in which the state and reward do not incorporate information from neighboring cells.
Animals have evolved various agile locomotion strategies, such as sprinting, leaping, and jumping. There is a growing interest in developing legged robots that move like their biological counterparts and show various agile skills to navigate complex environments quickly. Despite the interest, the field lacks systematic benchmarks to measure the performance of control policies and hardware in agility. We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots. Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism. This encourages researchers to develop controllers that not only move fast, but do so in a controllable and versatile way. To set strong baselines, we present two methods for tackling the benchmark. In the first approach, we train specialist locomotion skills using on-policy reinforcement learning methods and combine them with a high-level navigation controller. In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived environment and robot states. Using a custom-built quadruped robot, we demonstrate that our method can complete the course at half the speed of a dog. We hope that our work represents a step towards creating controllers that enable robots to reach animal-level agility.
Letting robots emulate human behavior has always posed a challenge, particularly in scenarios involving multiple robots. In this paper, we presented a framework aimed at achieving multi-agent reinforcement learning for robot control in construction tasks. The construction industry often necessitates complex interactions and coordination among multiple robots, demanding a solution that enables effective collaboration and efficient task execution. Our proposed framework leverages the principles of proximal policy optimization and developed a multi-agent version to enable the robots to acquire sophisticated control policies. We evaluated the effectiveness of our framework by learning four different collaborative tasks in the construction environments. The results demonstrated the capability of our approach in enabling multiple robots to learn and adapt their behaviors in complex construction tasks while effectively preventing collisions. Results also revealed the potential of combining and exploring the advantages of reinforcement learning algorithms and inverse kinematics. The findings from this research contributed to the advancement of multi-agent reinforcement learning in the domain of construction robotics. By enabling robots to behave like human counterparts and collaborate effectively, we pave the way for more efficient, flexible, and intelligent construction processes.
The human brain has inspired novel concepts complementary to classical and quantum computing architectures, such as artificial neural networks and neuromorphic computers, but it is not clear how their performances compare. Here we report a new methodological framework for benchmarking cognitive performance based on solving computational problems with increasing problem size. We determine computational efficiencies in experiments with human participants and benchmark these against complexity classes. We show that a neuromorphic architecture with limited field-of-view size and added noise provides a good approximation to our results. The benchmarking also suggests there is no quantum advantage on the scales of human capability compared to the neuromorphic model. Thus, the framework offers unique insights into the computational efficiency of the brain by considering it a black box.
More than one hundred benchmarks have been developed to test the commonsense knowledge and commonsense reasoning abilities of artificial intelligence (AI) systems. However, these benchmarks are often flawed and many aspects of common sense remain untested. Consequently, we do not currently have any reliable way of measuring to what extent existing AI systems have achieved these abilities. This paper surveys the development and uses of AI commonsense benchmarks. We discuss the nature of common sense; the role of common sense in AI; the goals served by constructing commonsense benchmarks; and desirable features of commonsense benchmarks. We analyze the common flaws in benchmarks, and we argue that it is worthwhile to invest the work needed ensure that benchmark examples are consistently high quality. We survey the various methods of constructing commonsense benchmarks. We enumerate 139 commonsense benchmarks that have been developed: 102 text-based, 18 image-based, 12 video based, and 7 simulated physical environments. We discuss the gaps in the existing benchmarks and aspects of commonsense reasoning that are not addressed in any existing benchmark. We conclude with a number of recommendations for future development of commonsense AI benchmarks.
With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.