A solution to control for nonresponse bias consists of multiplying the design weights of respondents by the inverse of estimated response probabilities to compensate for the nonrespondents. Maximum likelihood and calibration are two approaches that can be applied to obtain estimated response probabilities. We consider a common framework in which these approaches can be compared. We develop an asymptotic study of the behavior of the resulting estimator when calibration is applied. A logistic regression model for the response probabilities is postulated. Missing at random and unclustered data are supposed. Three main contributions of this work are: 1) we show that the estimators with the response probabilities estimated via calibration are asymptotically equivalent to unbiased estimators and that a gain in efficiency is obtained when estimating the response probabilities via calibration as compared to the estimator with the true response probabilities, 2) we show that the estimators with the response probabilities estimated via calibration are doubly robust to model misspecification and explain why double robustness is not guaranteed when maximum likelihood is applied, and 3) we discuss and illustrate problems related to response probabilities estimation, namely existence of a solution to the estimating equations, problems of convergence, and extreme weights. We explain and illustrate why the first aforementioned problem is more likely with calibration than with maximum likelihood estimation. We present the results of a simulation study in order to illustrate these elements.
The position estimation problem based on received power measurements is investigated for visible light systems in the presence of luminous flux degradation of light emitting diodes (LEDs). When the receiver is unaware of this degradation and performs position estimation accordingly, there exists a mismatch between the true model and the assumed model. For this scenario, the misspecified Cram\'er-Rao bound (MCRB) and the mismatched maximum likelihood (MML) estimator are derived to quantify the performance loss due to this model mismatch. Also, the Cram\'er-Rao lower bound (CRB) and the maximum likelihood (ML) estimator are derived when the receiver knows the degradation formula for the LEDs but does not know the decay rate parameter in that formula. In addition, in the presence of full knowledge about the degradation formula and the decay rate parameters, the CRB and the ML estimator are obtained to specify the best achievable performance. By evaluating the theoretical limits and the estimators in these three scenarios, we reveal the effects of the information about the LED degradation model and the decay rate parameters on position estimation performance. It is shown that the model mismatch can result in significant degradation in localization performance at high signal-to-noise ratios, which can be compensated by conducting joint position and decay rate parameter estimation.
This study explores the robustness of label noise classifiers, aiming to enhance model resilience against noisy data in complex real-world scenarios. Label noise in supervised learning, characterized by erroneous or imprecise labels, significantly impairs model performance. This research focuses on the increasingly pertinent issue of label noise's impact on practical applications. Addressing the prevalent challenge of inaccurate training data labels, we integrate adversarial machine learning (AML) and importance reweighting techniques. Our approach involves employing convolutional neural networks (CNN) as the foundational model, with an emphasis on parameter adjustment for individual training samples. This strategy is designed to heighten the model's focus on samples critically influencing performance.
Inhomogeneities in real-world data, e.g., due to changes in the observation noise level or variations in the structural complexity of the source function, pose a unique set of challenges for statistical inference. Accounting for them can greatly improve predictive power when physical resources or computation time is limited. In this paper, we draw on recent theoretical results on the estimation of local function complexity (LFC), derived from the domain of local polynomial smoothing (LPS), to establish a notion of local structural complexity, which is used to develop a model-agnostic active learning (AL) framework. Due to its reliance on pointwise estimates, the LPS model class is not robust and scalable concerning large input space dimensions that typically come along with real-world problems. Here, we derive and estimate the Gaussian process regression (GPR)-based analog of the LPS-based LFC and use it as a substitute in the above framework to make it robust and scalable. We assess the effectiveness of our LFC estimate in an AL application on a prototypical low-dimensional synthetic dataset, before taking on the challenging real-world task of reconstructing a quantum chemical force field for a small organic molecule and demonstrating state-of-the-art performance with a significantly reduced training demand.
Bayesian optimization is a coherent, ubiquitous approach to decision-making under uncertainty, with applications including multi-arm bandits, active learning, and black-box optimization. Bayesian optimization selects decisions (i.e. objective function queries) with maximal expected utility with respect to the posterior distribution of a Bayesian model, which quantifies reducible, epistemic uncertainty about query outcomes. In practice, subjectively implausible outcomes can occur regularly for two reasons: 1) model misspecification and 2) covariate shift. Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models and a simple mechanism to correct for covariate shift. We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity, and investigate its behavior on a suite of black-box optimization tasks and tabular ranking tasks. In many cases we find that query coverage can be significantly improved without harming sample-efficiency.
We propose a novel data-driven approach to allocate transmit power for federated learning (FL) over interference-limited wireless networks. The proposed method is useful in challenging scenarios where the wireless channel is changing during the FL training process and when the training data are not independent and identically distributed (non-i.i.d.) on the local devices. Intuitively, the power policy is designed to optimize the information received at the server end during the FL process under communication constraints. Ultimately, our goal is to improve the accuracy and efficiency of the global FL model being trained. The proposed power allocation policy is parameterized using graph convolutional networks (GCNs), and the associated constrained optimization problem is solved through a primal-dual (PD) algorithm. Theoretically, we show that the formulated problem has a zero duality gap and, once the power policy is parameterized, optimality depends on how expressive this parameterization is. Numerically, we demonstrate that the proposed method outperforms existing baselines under different wireless channel settings and varying degrees of data heterogeneity.
In the realm of wireless communication, stochastic modeling of channels is instrumental for the assessment and design of operational systems. Deep learning neural networks (DLNN), including generative adversarial networks (GANs), are being used to approximate wireless Orthogonal frequency-division multiplexing (OFDM) channels with fading and noise, using real measurement data. These models primarily focus on channel output (y) distribution given input x: p(y|x), limiting their application scope. DLNN channel models have been tested predominantly on simple simulated channels. In this paper, we build both GANs and feedforward neural networks (FNN) to approximate a more general channel model, which is represented by a conditional probability density function (PDF) of receiving signal or power of node receiving power Prx: f_p_rx|d(()), where is communication distance. The stochastic models are trained and tested for the impact of fading channels on transmissions of OFDM QAM modulated signal and transmissions of general signal regardless of modulations. New metrics are proposed for evaluation of modeling accuracy and comparisons of the GAN-based model with the FNN-based model. Extensive experiments on Nakagami fading channel show accuracy and the effectiveness of the approaches.
One of the fundamental challenges in drawing causal inferences from observational studies is that the assumption of no unmeasured confounding is not testable from observed data. Therefore, assessing sensitivity to this assumption's violation is important to obtain valid causal conclusions in observational studies. Although several sensitivity analysis frameworks are available in the casual inference literature, very few of them are applicable to observational studies with multivalued treatments. To address this issue, we propose a sensitivity analysis framework for performing sensitivity analysis in multivalued treatment settings. Within this framework, a general class of additive causal estimands has been proposed. We demonstrate that the estimation of the causal estimands under the proposed sensitivity model can be performed very efficiently. Simulation results show that the proposed framework performs well in terms of bias of the point estimates and coverage of the confidence intervals when there is sufficient overlap in the covariate distributions. We illustrate the application of our proposed method by conducting an observational study that estimates the causal effect of fish consumption on blood mercury levels.
In the era of extensive data growth, robust and efficient mechanisms are needed to store and manage vast amounts of digital information, such as Data Storage Systems (DSSs). Concurrently, privacy concerns have arisen, leading to the development of techniques like Private Information Retrieval (PIR) to enable data access while preserving privacy. A PIR protocol allows users to retrieve information from a database without revealing the specifics of their query or the data they are accessing. With the advent of quantum computing, researchers have explored the potential of using quantum systems to enhance privacy in information retrieval. In a Quantum Private Information Retrieval (QPIR) protocol, a user can retrieve information from a database by downloading quantum systems from multiple servers, while ensuring that the servers remain oblivious to the specific information being accessed. This scenario offers a unique advantage by leveraging the inherent properties of quantum systems to provide enhanced privacy guarantees and improved communication rates compared to classical PIR protocols. In this thesis we consider the QPIR setting where the queries and the coded storage systems are classical, while the responses from the servers are quantum. This problem was treated by Song et al. for replicated storage and different collusion patterns. This thesis aims to develop QPIR protocols for coded storage by combining known classical PIR protocols with quantum communication algorithms, achieving enhanced privacy and communication costs. We consider different storage codes and robustness assumptions, and we prove that the achieved communication cost is always lower than the classical counterparts.
AI recommender systems are sought for decision support by providing suggestions to operators responsible for making final decisions. However, these systems are typically considered black boxes, and are often presented without any context or insight into the underlying algorithm. As a result, recommender systems can lead to miscalibrated user reliance and decreased situation awareness. Recent work has focused on improving the transparency of recommender systems in various ways such as improving the recommender's analysis and visualization of the figures of merit, providing explanations for the recommender's decision, as well as improving user training or calibrating user trust. In this paper, we introduce an alternative transparency technique of structuring the order in which contextual information and the recommender's decision are shown to the human operator. This technique is designed to improve the operator's situation awareness and therefore the shared situation awareness between the operator and the recommender system. This paper presents the results of a two-phase between-subjects study in which participants and a recommender system jointly make a high-stakes decision. We varied the amount of contextual information the participant had, the assessment technique of the figures of merit, and the reliability of the recommender system. We found that providing contextual information upfront improves the team's shared situation awareness by improving the human decision maker's initial and final judgment, as well as their ability to discern the recommender's error boundary. Additionally, this technique accurately calibrated the human operator's trust in the recommender. This work proposes and validates a way to provide model-agnostic transparency into AI systems that can support the human decision maker and lead to improved team performance.
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.