In the realm of wireless communication, stochastic modeling of channels is instrumental for the assessment and design of operational systems. Deep learning neural networks (DLNN), including generative adversarial networks (GANs), are being used to approximate wireless Orthogonal frequency-division multiplexing (OFDM) channels with fading and noise, using real measurement data. These models primarily focus on channel output (y) distribution given input x: p(y|x), limiting their application scope. DLNN channel models have been tested predominantly on simple simulated channels. In this paper, we build both GANs and feedforward neural networks (FNN) to approximate a more general channel model, which is represented by a conditional probability density function (PDF) of receiving signal or power of node receiving power Prx: f_p_rx|d(()), where is communication distance. The stochastic models are trained and tested for the impact of fading channels on transmissions of OFDM QAM modulated signal and transmissions of general signal regardless of modulations. New metrics are proposed for evaluation of modeling accuracy and comparisons of the GAN-based model with the FNN-based model. Extensive experiments on Nakagami fading channel show accuracy and the effectiveness of the approaches.
Despite the crucial importance of addressing Black Hole failures in Internet backbone networks, effective detection strategies in backbone networks are lacking. This is largely because previous research has been centered on Mobile Ad-hoc Networks (MANETs), which operate under entirely different dynamics, protocols, and topologies, making their findings not directly transferable to backbone networks. Furthermore, detecting Black Hole failures in backbone networks is particularly challenging. It requires a comprehensive range of network data due to the wide variety of conditions that need to be considered, making data collection and analysis far from straightforward. Addressing this gap, our study introduces a novel approach for Black Hole detection in backbone networks using specialized Yet Another Next Generation (YANG) data models with Black Hole-sensitive Metric Matrix (BHMM) analysis. This paper details our method of selecting and analyzing four YANG models relevant to Black Hole detection in ISP networks, focusing on routing protocols and ISP-specific configurations. Our BHMM approach derived from these models demonstrates a 10% improvement in detection accuracy and a 13% increase in packet delivery rate, highlighting the efficiency of our approach. Additionally, we evaluate the Machine Learning approach leveraged with BHMM analysis in two different network settings, a commercial ISP network, and a scientific research-only network topology. This evaluation also demonstrates the practical applicability of our method, yielding significantly improved prediction outcomes in both environments.
How to automatically transfer the dynamic texture of a given video to the target still image is a challenging and ongoing problem. In this paper, we propose to handle this task via a simple yet effective model that utilizes both PatchMatch and Transformers. The key idea is to decompose the task of dynamic texture transfer into two stages, where the start frame of the target video with the desired dynamic texture is synthesized in the first stage via a distance map guided texture transfer module based on the PatchMatch algorithm. Then, in the second stage, the synthesized image is decomposed into structure-agnostic patches, according to which their corresponding subsequent patches can be predicted by exploiting the powerful capability of Transformers equipped with VQ-VAE for processing long discrete sequences. After getting all those patches, we apply a Gaussian weighted average merging strategy to smoothly assemble them into each frame of the target stylized video. Experimental results demonstrate the effectiveness and superiority of the proposed method in dynamic texture transfer compared to the state of the art.
In this paper, the problem of low-latency communication and computation resource allocation for digital twin (DT) over wireless networks is investigated. In the considered model, multiple physical devices in the physical network (PN) needs to frequently offload the computation task related data to the digital network twin (DNT), which is generated and controlled by the central server. Due to limited energy budget of the physical devices, both computation accuracy and wireless transmission power must be considered during the DT procedure. This joint communication and computation problem is formulated as an optimization problem whose goal is to minimize the overall transmission delay of the system under total PN energy and DNT model accuracy constraints. To solve this problem, an alternating algorithm with iteratively solving device scheduling, power control, and data offloading subproblems. For the device scheduling subproblem, the optimal solution is obtained in closed form through the dual method. For the special case with one physical device, the optimal number of transmission times is reveled. Based on the theoretical findings, the original problem is transformed into a simplified problem and the optimal device scheduling can be found. Numerical results verify that the proposed algorithm can reduce the transmission delay of the system by up to 51.2\% compared to the conventional schemes.
In the context of communication networks, digital twin technology provides a means to replicate the radio frequency (RF) propagation environment as well as the system behaviour, allowing for a way to optimize the performance of a deployed system based on simulations. One of the key challenges in the application of Digital Twin technology to mmWave systems is the prevalent channel simulators' stringent requirements on the accuracy of the 3D Digital Twin, reducing the feasibility of the technology in real applications. We propose a practical Digital Twin creation pipeline and a channel simulator, that relies only on a single mounted camera and position information. We demonstrate the performance benefits compared to methods that do not explicitly model the 3D environment, on downstream sub-tasks in beam acquisition, using the real-world dataset of the DeepSense6G challenge
A hybrid continuum robot design is introduced that combines a proximal tendon-actuated section with a distal telescoping section comprised of permanent-magnet spheres actuated using an external magnet. While, individually, each section can approach a point in its workspace from one or at most several orientations, the two-section combination possesses a dexterous workspace. The paper describes kinematic modeling of the hybrid design and provides a description of the dexterous workspace. We present experimental validation which shows that a simplified kinematic model produces tip position mean and maximum errors of 3% and 7% of total robot length, respectively.
We study the design of a goal-oriented sampling and scheduling strategy through a channel with highly variable two-way random delay, which can exhibit memory (e.g., Delay and Disruption Tolerant Networks). The objective of the communication is to optimize the performance of remote inference, where an inference algorithm (e.g., a trained neural network) on the receiver side predicts a time-varying target signal using the data samples transmitted by a sensor. Previous formulations to this problem either assumed a channel with IID transmission delay, neglecting feedback delay, or considered the monotonic relation that the performance only gets worse as the input information ages. We show how, with delayed feedback, one can effectively exploit the knowledge about delay memory through an index-based threshold policy. This policy minimizes the expected time-average inference error that can be monotone or non-monotone in age. The index function is expressed in terms of the Age of Information (AoI) on the receiver side and a parameter regarding the distribution of subsequent transmission delay, both of which can readily be tracked.
Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.
Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.