亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper aims to simulate viscoplastic flow in a shallow-water regime. We specifically use the Bingham model in which the material behaves as a solid if the stress is below a certain threshold, otherwise, it moves as a fluid. The main difficulty of this problem is the coupling of the shallow-water equations with the viscoplastic constitutive laws and the high computational effort needed in its solution. Although there have been many studies of this problem, most of these works use explicit methods with simplified empirical models. In our work, to accommodate non-uniform grids and complicated geometries, we use the discontinuous Galerkin method to solve shallow viscoplastic flows. This method is attractive due to its high parallelization, h- and p-adaptivity, and ability to capture shocks. Additionally, we treat the discontinuities in the interfaces between elements with numerical fluxes that ensure a stable solution of the nonlinear hyperbolic equations. To couple the Bingham model with the shallow-water equations, we regularize the problem with three alternatives. Finally, in order to show the effectiveness of our approach, we perform numerical examples for the usual benchmarks of the shallow-water equations.

相關內容

The flocking motion control is concerned with managing the possible conflicts between local and team objectives of multi-agent systems. The overall control process guides the agents while monitoring the flock-cohesiveness and localization. The underlying mechanisms may degrade due to overlooking the unmodeled uncertainties associated with the flock dynamics and formation. On another side, the efficiencies of the various control designs rely on how quickly they can adapt to different dynamic situations in real-time. An online model-free policy iteration mechanism is developed here to guide a flock of agents to follow an independent command generator over a time-varying graph topology. The strength of connectivity between any two agents or the graph edge weight is decided using a position adjacency dependent function. An online recursive least squares approach is adopted to tune the guidance strategies without knowing the dynamics of the agents or those of the command generator. It is compared with another reinforcement learning approach from the literature which is based on a value iteration technique. The simulation results of the policy iteration mechanism revealed fast learning and convergence behaviors with less computational effort.

We introduce and analyze a discontinuous Galerkin method for the numerical modelling of the equations of Multiple-Network Poroelastic Theory (MPET) in the dynamic formulation. The MPET model can comprehensively describe functional changes in the brain considering multiple scales of fluids. Concerning the spatial discretization, we employ a high-order discontinuous Galerkin method on polygonal and polyhedral grids and we derive stability and a priori error estimates. The temporal discretization is based on a coupling between a Newmark $\beta$-method for the momentum equation and a $\theta$-method for the pressure equations. After the presentation of some verification numerical tests, we perform a convergence analysis using an agglomerated mesh of a geometry of a brain slice. Finally we present a simulation in a three dimensional patient-specific brain reconstructed from magnetic resonance images. The model presented in this paper can be regarded as a preliminary attempt to model the perfusion in the brain.

Computing accurate splines of degree greater than three is still a challenging task in today's applications. In this type of interpolation, high-order derivatives are needed on the given mesh. As these derivatives are rarely known and are often not easy to approximate accurately, high-degree splines are difficult to obtain using standard approaches. In Beaudoin (1998), Beaudoin and Beauchemin (2003), and Pepin et al. (2019), a new method to compute spline approximations of low or high degree from equidistant interpolation nodes based on the discrete Fourier transform is analyzed. The accuracy of this method greatly depends on the accuracy of the boundary conditions. An algorithm for the computation of the boundary conditions can be found in Beaudoin (1998), and Beaudoin and Beauchemin (2003). However, this algorithm lacks robustness since the approximation of the boundary conditions is strongly dependant on the choice of $\theta$ arbitrary parameters, $\theta$ being the degree of the spline. The goal of this paper is therefore to propose two new robust algorithms, independent of arbitrary parameters, for the computation of the boundary conditions in order to obtain accurate splines of any degree. Numerical results will be presented to show the efficiency of these new approaches.

We present a strongly conservative and pressure-robust hybridizable discontinuous Galerkin method for the coupled time-dependent Navier-Stokes and Darcy problem. We show existence and uniqueness of a solution and present an optimal a priori error analysis for the fully discrete problem when using Backward Euler time stepping. The theoretical results are verified by numerical examples.

We present and analyze a high-order discontinuous Galerkin method for the space discretization of the wave propagation model in thermo-poroelastic media. The proposed scheme supports general polytopal grids. Stability analysis and $hp$-version error estimates in suitable energy norms are derived for the semi-discrete problem. The fully-discrete scheme is then obtained based on employing an implicit Newmark-$\beta$ time integration scheme. A wide set of numerical simulations is reported, both for the verification of the theoretical estimates and for examples of physical interest. A comparison with the results of the poroelastic model is provided too, highlighting the differences between the predictive capabilities of the two models.

The matrix sensing problem is an important low-rank optimization problem that has found a wide range of applications, such as matrix completion, phase synchornization/retrieval, robust PCA, and power system state estimation. In this work, we focus on the general matrix sensing problem with linear measurements that are corrupted by random noise. We investigate the scenario where the search rank $r$ is equal to the true rank $r^*$ of the unknown ground truth (the exact parametrized case), as well as the scenario where $r$ is greater than $r^*$ (the overparametrized case). We quantify the role of the restricted isometry property (RIP) in shaping the landscape of the non-convex factorized formulation and assisting with the success of local search algorithms. First, we develop a global guarantee on the maximum distance between an arbitrary local minimizer of the non-convex problem and the ground truth under the assumption that the RIP constant is smaller than $1/(1+\sqrt{r^*/r})$. We then present a local guarantee for problems with an arbitrary RIP constant, which states that any local minimizer is either considerably close to the ground truth or far away from it. More importantly, we prove that this noisy, overparametrized problem exhibits the strict saddle property, which leads to the global convergence of perturbed gradient descent algorithm in polynomial time. The results of this work provide a comprehensive understanding of the geometric landscape of the matrix sensing problem in the noisy and overparametrized regime.

We propose a new randomized method for solving systems of nonlinear equations, which can find sparse solutions or solutions under certain simple constraints. The scheme only takes gradients of component functions and uses Bregman projections onto the solution space of a Newton equation. In the special case of euclidean projections, the method is known as nonlinear Kaczmarz method. Furthermore, if the component functions are nonnegative, we are in the setting of optimization under the interpolation assumption and the method reduces to SGD with the recently proposed stochastic Polyak step size. For general Bregman projections, our method is a stochastic mirror descent with a novel adaptive step size. We prove that in the convex setting each iteration of our method results in a smaller Bregman distance to exact solutions as compared to the standard Polyak step. Our generalization to Bregman projections comes with the price that a convex one-dimensional optimization problem needs to be solved in each iteration. This can typically be done with globalized Newton iterations. Convergence is proved in two classical settings of nonlinearity: for convex nonnegative functions and locally for functions which fulfill the tangential cone condition. Finally, we show examples in which the proposed method outperforms similar methods with the same memory requirements.

In literature, the cost of a partitioned fluid-structure interaction scheme is typically assessed by the number of coupling iterations required per time step, while ignoring the internal iterations within the nonlinear subproblems. In this work, we demonstrate that these internal iterations have a significant influence on the computational cost of the coupled simulation. Particular attention is paid to how limiting the number of iterations within each solver call can shorten the overall run time, as it avoids polishing the subproblem solution using unconverged coupling data. Based on systematic parameter studies, we investigate the optimal number of subproblem iterations per coupling step. Lastly, this work proposes a new convergence criterion for coupled systems that is based on the residuals of the subproblems and therefore does not require any additional convergence tolerance for the coupling loop.

In this article, we propose a class of $L_q$-norm based U-statistics for a family of global testing problems related to high-dimensional data. This includes testing of mean vector and its spatial sign, simultaneous testing of linear model coefficients, and testing of component-wise independence for high-dimensional observations, among others. Under the null hypothesis, we derive asymptotic normality and independence between $L_q$-norm based U-statistics for several $q$s under mild moment and cumulant conditions. A simple combination of two studentized $L_q$-based test statistics via their $p$-values is proposed and is shown to attain great power against alternatives of different sparsity. Our work is a substantial extension of He et al. (2021), which is mostly focused on mean and covariance testing, and we manage to provide a general treatment of asymptotic independence of $L_q$-norm based U-statistics for a wide class of kernels. To alleviate the computation burden, we introduce a variant of the proposed U-statistics by using the monotone indices in the summation, resulting in a U-statistic with asymmetric kernel. A dynamic programming method is introduced to reduce the computational cost from $O(n^{qr})$, which is required for the calculation of the full U-statistic, to $O(n^r)$ where $r$ is the order of the kernel. Numerical studies further corroborate the advantage of the proposed adaptive test as compared to some existing competitors.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

北京阿比特科技有限公司