With the implementation of the new EU regulation 2022/1426 regarding the type-approval of the automated driving system (ADS) of fully automated vehicles, scenario-based testing has gained significant importance in evaluating the performance and safety of advanced driver assistance systems and automated driving systems. However, the exploration and generation of concrete scenarios from a single logical scenario can often lead to a number of similar or redundant scenarios, which may not contribute to the testing goals. This paper focuses on the the goal to reduce the scenario set by clustering concrete scenarios from a single logical scenario. By employing clustering techniques, redundant and uninteresting scenarios can be identified and eliminated, resulting in a representative scenario set. This reduction allows for a more focused and efficient testing process, enabling the allocation of resources to the most relevant and critical scenarios. Furthermore, the identified clusters can provide valuable insights into the scenario space, revealing patterns and potential problems with the system's behavior.
This research sheds light on the present and future landscape of Engineering Entrepreneurship Education (EEE) by exploring varied approaches and models adopted in Australian universities, evaluating program effectiveness, and offering recommendations for curriculum enhancement. While EEE programs have been in existence for over two decades, their efficacy remains underexplored. Using a multi-method approach encompassing self-reflection, scoping review, surveys, and interviews, this study addresses key research questions regarding the state, challenges, trends, and effectiveness of EEE. Findings reveal challenges like resource limitations and propose solutions such as experiential learning and industry partnerships. These insights underscore the importance of tailored EEE and inform teaching strategies and curriculum development, benefiting educators and policymakers worldwide.
This paper investigates the impact of memory orientation on the bias pattern of SRAM-based PUFs. We designed and fabricated a 65nm CMOS chip that contains eleven SRAM macros that exercise different memory- and chip-level parameters. At the memory level, several parameters passed to the SRAM compiler are considered, including the number of addresses, the number of words, the aspect ratio, and the chosen bitcell. Chip-level decisions are considered during the floorplan, including the location and rotation of each SRAM macro in the testchip. In this study, we conduct a comprehensive analysis of different memory orientations and their effect on the biasing direction. Physical measurements performed on 50 fabricated chips revealed that specific memory orientations, namely R270 and MY90, exhibit a distinct negative biasing direction compared to other orientations. Importantly, this biasing direction remains consistent regardless of memory type, column mux ratio, memory size, or the utilization of SRAMs with different bitcells. Overall, this study highlights the significance of careful physical implementation and memory orientation selection in designing SRAM-based PUFs. Our findings can guide designers in the selection of SRAM memories with properties that make for better PUFs that potentially require less error correction effort to compensate for instability.
The Internet of Things (IoT) devices are rapidly increasing in popularity, with more individuals using Internet-connected devices that continuously monitor their activities. This work explores privacy concerns and expectations of end-users related to Trigger-Action platforms (TAPs) in the context of the Internet of Things (IoT). TAPs allow users to customize their smart environments by creating rules that trigger actions based on specific events or conditions. As personal data flows between different entities, there is a potential for privacy concerns. In this study, we aimed to identify the privacy factors that impact users' concerns and preferences for using IoT TAPs. To address this research objective, we conducted three focus groups with 15 participants and we extracted nine themes related to privacy factors using thematic analysis. Our participants particularly prefer to have control and transparency over the automation and are concerned about unexpected data inferences, risks and unforeseen consequences for themselves and for bystanders that are caused by the automation. The identified privacy factors can help researchers derive predefined and selectable profiles of privacy permission settings for IoT TAPs that represent the privacy preferences of different types of users as a basis for designing usable privacy controls for IoT TAPs.
The Forum for Information Retrieval (FIRE) started a shared task this year for classification of comments of different code segments. This is binary text classification task where the objective is to identify whether comments given for certain code segments are relevant or not. The BioNLP-IISERB group at the Indian Institute of Science Education and Research Bhopal (IISERB) participated in this task and submitted five runs for five different models. The paper presents the overview of the models and other significant findings on the training corpus. The methods involve different feature engineering schemes and text classification techniques. The performance of the classical bag of words model and transformer-based models were explored to identify significant features from the given training corpus. We have explored different classifiers viz., random forest, support vector machine and logistic regression using the bag of words model. Furthermore, the pre-trained transformer based models like BERT, RoBERT and ALBERT were also used by fine-tuning them on the given training corpus. The performance of different such models over the training corpus were reported and the best five models were implemented on the given test corpus. The empirical results show that the bag of words model outperforms the transformer based models, however, the performance of our runs are not reasonably well in both training and test corpus. This paper also addresses the limitations of the models and scope for further improvement.
Data catalogs play a crucial role in modern data-driven organizations by facilitating the discovery, understanding, and utilization of diverse data assets. However, ensuring their quality and reliability is complex, especially in open and large-scale data environments. This paper proposes a framework to automatically determine the quality of open data catalogs, addressing the need for efficient and reliable quality assessment mechanisms. Our framework can analyze various core quality dimensions, such as accuracy, completeness, consistency, scalability, and timeliness, offer several alternatives for the assessment of compatibility and similarity across such catalogs as well as the implementation of a set of non-core quality dimensions such as provenance, readability, and licensing. The goal is to empower data-driven organizations to make informed decisions based on trustworthy and well-curated data assets. The source code that illustrates our approach can be downloaded from //www.github.com/jorge-martinez-gil/dataq/.
We present VERF, a collection of two methods (VERF-PnP and VERF-Light) for providing runtime assurance on the correctness of a camera pose estimate of a monocular camera without relying on direct depth measurements. We leverage the ability of NeRF (Neural Radiance Fields) to render novel RGB perspectives of a scene. We only require as input the camera image whose pose is being estimated, an estimate of the camera pose we want to monitor, and a NeRF model containing the scene pictured by the camera. We can then predict if the pose estimate is within a desired distance from the ground truth and justify our prediction with a level of confidence. VERF-Light does this by rendering a viewpoint with NeRF at the estimated pose and estimating its relative offset to the sensor image up to scale. Since scene scale is unknown, the approach renders another auxiliary image and reasons over the consistency of the optical flows across the three images. VERF-PnP takes a different approach by rendering a stereo pair of images with NeRF and utilizing the Perspective-n-Point (PnP) algorithm. We evaluate both methods on the LLFF dataset, on data from a Unitree A1 quadruped robot, and on data collected from Blue Origin's sub-orbital New Shepard rocket to demonstrate the effectiveness of the proposed pose monitoring method across a range of scene scales. We also show monitoring can be completed in under half a second on a 3090 GPU.
Randomized Controlled Trials (RCTs) often adjust for baseline covariates in order to increase power. This technical note provides a short derivation of a simple rule of thumb for approximating the ratio of the power of an adjusted analysis to that of an unadjusted analysis. Specifically, if the unadjusted analysis is powered to approximately 80\%, then the ratio of the power of the adjusted analysis to the power of the unadjusted analysis is approximately $1 + \frac{1}{2} R^2$, where $R$ is the correlation between the baseline covariate and the outcome.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.