Logical frameworks provide natural and direct ways of specifying and reasoning within deductive systems. The logical framework LF and subsequent developments focus on finitary proof systems, making the formalization of circular proof systems in such logical frameworks a cumbersome and awkward task. To address this issue, we propose CoLF, a conservative extension of LF with higher-order rational terms and mixed inductive and coinductive definitions. In this framework, two terms are equal if they unfold to the same infinite regular B\"ohm tree. Both term equality and type checking are decidable in CoLF. We illustrate the elegance and expressive power of the framework with several small case studies.
For many decades, advances in static verification have focused on linear integer arithmetic (LIA) programs. Many real-world programs are, however, written with non-linear integer arithmetic (NLA) expressions, such as programs that model physical events, control systems, or nonlinear activation functions in neural networks. While there are some approaches to reasoning about such NLA programs, still many verification tools fall short when trying to analyze them. To expand the scope of existing tools, we introduce a new method of converting programs with NLA expressions into semantically equivalent LIA programs via a technique we call dual rewriting. Dual rewriting discovers a linear replacement for an NLA Boolean expression (e.g. as found in conditional branching), simultaneously exploring both the positive and negative side of the condition, and using a combination of static validation and dynamic generalization of counterexamples. While perhaps surprising at first, this is often possible because the truth value of a Boolean NLA expression can be characterized in terms of a Boolean combination of linearly-described regions/intervals where the expression is true and those where it is false. The upshot is that rewriting NLA expressions to LIA expressions beforehand enables off-the-shelf LIA tools to be applied to the wider class of NLA programs. We built a new tool DrNLA and show it can discover LIA replacements for a variety of NLA programs. We then applied our work to branching-time verification of NLA programs, creating the first set of such benchmarks (92 in total) and showing that DrNLA's rewriting enable tools such as FuncTion and T2 to verify CTL properties of 42 programs that previously could not be verified. We also show a potential use of DrNLA assisting Frama-C in program slicing, and report that execution speed is not impacted much by rewriting.
This paper examines asymmetric and time-varying dependency structures between financial returns, using a novel approach consisting of a combination of regime-switching models and the local Gaussian correlation (LGC). We propose an LGC-based bootstrap test for whether the dependence structure in financial returns across different regimes is equal. We examine this test in a Monte Carlo study, where it shows good level and power properties. We argue that this approach is more intuitive than competing approaches, typically combining regime-switching models with copula theory. Furthermore, the LGC is a semi-parametric approach, hence avoids any parametric specification of the dependence structure. We illustrate our approach using returns from the US-UK stock markets and the US stock and government bond markets. Using a two-regime model for the US-UK stock returns, the test rejects equality of the dependence structure in the two regimes. Furthermore, we find evidence of lower tail dependence in the regime associated with financial downturns in the LGC structure. For a three-regime model fitted to US stock and bond returns, the test rejects equality of the dependence structures between all regime pairs. Furthermore, we find that the LGC has a primarily positive relationship in the time period 1980-2000, mostly a negative relationship from 2000 and onwards. In addition, the regime associated with bear markets indicates less, but asymmetric dependence, clearly documenting the loss of diversification benefits in times of crisis.
Neural networks (NNs) are increasingly applied in safety-critical systems such as autonomous vehicles. However, they are fragile and are often ill-behaved. Consequently, their behaviors should undergo rigorous guarantees before deployment in practice. In this paper, we propose a set-boundary reachability method to investigate the safety verification problem of NNs from a topological perspective. Given an NN with an input set and a safe set, the safety verification problem is to determine whether all outputs of the NN resulting from the input set fall within the safe set. In our method, the homeomorphism property and the open map property of NNs are mainly exploited, which establish rigorous guarantees between the boundaries of the input set and the boundaries of the output set. The exploitation of these two properties facilitates reachability computations via extracting subsets of the input set rather than the entire input set, thus controlling the wrapping effect in reachability analysis and facilitating the reduction of computation burdens for safety verification. The homeomorphism property exists in some widely used NNs such as invertible residual networks (i-ResNets) and Neural ordinary differential equations (Neural ODEs), and the open map is a less strict property and easier to satisfy compared with the homeomorphism property. For NNs establishing either of these properties, our set-boundary reachability method only needs to perform reachability analysis on the boundary of the input set. Moreover, for NNs that do not feature these properties with respect to the input set, we explore subsets of the input set for establishing the local homeomorphism property and then abandon these subsets for reachability computations. Finally, some examples demonstrate the performance of the proposed method.
Although data-driven methods usually have noticeable performance on disease diagnosis and treatment, they are suspected of leakage of privacy due to collecting data for model training. Recently, federated learning provides a secure and trustable alternative to collaboratively train model without any exchange of medical data among multiple institutes. Therefore, it has draw much attention due to its natural merit on privacy protection. However, when heterogenous medical data exists between different hospitals, federated learning usually has to face with degradation of performance. In the paper, we propose a new personalized framework of federated learning to handle the problem. It successfully yields personalized models based on awareness of similarity between local data, and achieves better tradeoff between generalization and personalization than existing methods. After that, we further design a differentially sparse regularizer to improve communication efficiency during procedure of model training. Additionally, we propose an effective method to reduce the computational cost, which improves computation efficiency significantly. Furthermore, we collect 5 real medical datasets, including 2 public medical image datasets and 3 private multi-center clinical diagnosis datasets, and evaluate its performance by conducting nodule classification, tumor segmentation, and clinical risk prediction tasks. Comparing with 13 existing related methods, the proposed method successfully achieves the best model performance, and meanwhile up to 60% improvement of communication efficiency. Source code is public, and can be accessed at: //github.com/ApplicationTechnologyOfMedicalBigData/pFedNet-code.
Reinforcement learning from Human Feedback (RLHF) learns from preference signals, while standard Reinforcement Learning (RL) directly learns from reward signals. Preferences arguably contain less information than rewards, which makes preference-based RL seemingly more difficult. This paper theoretically proves that, for a wide range of preference models, we can solve preference-based RL directly using existing algorithms and techniques for reward-based RL, with small or no extra costs. Specifically, (1) for preferences that are drawn from reward-based probabilistic models, we reduce the problem to robust reward-based RL that can tolerate small errors in rewards; (2) for general arbitrary preferences where the objective is to find the von Neumann winner, we reduce the problem to multiagent reward-based RL which finds Nash equilibria for factored Markov games under a restricted set of policies. The latter case can be further reduce to adversarial MDP when preferences only depend on the final state. We instantiate all reward-based RL subroutines by concrete provable algorithms, and apply our theory to a large class of models including tabular MDPs and MDPs with generic function approximation. We further provide guarantees when K-wise comparisons are available.
Inspired by Solomonoffs theory of inductive inference, we propose a prior based on circuit complexity. There are several advantages to this approach. First, it relies on a complexity measure that does not depend on the choice of UTM. There is one universal definition for Boolean circuits involving an universal operation such as nand with simple conversions to alternative definitions such as and, or, and not. Second, there is no analogue of the halting problem. The output value of a circuit can be calculated recursively by computer in time proportional to the number of gates, while a short program may run for a very long time. Our prior assumes that a Boolean function, or equivalently, Boolean string of fixed length, is generated by some Bayesian mixture of circuits. This model is appropriate for learning Boolean functions from partial information, a problem often encountered within machine learning as "binary classification." We argue that an inductive bias towards simple explanations as measured by circuit complexity is appropriate for this problem.
As advancements in artificial intelligence propel progress in the life sciences, they may also enable the weaponisation and misuse of biological agents. This article differentiates two classes of AI tools that pose such biosecurity risks: large language models (LLMs) and biological design tools (BDTs). LLMs, such as GPT-4, are already able to provide dual-use information that could have enabled historical biological weapons efforts to succeed. As LLMs are turned into lab assistants and autonomous science tools, this will further increase their ability to support research. Thus, LLMs will in particular lower barriers to biological misuse. In contrast, BDTs will expand the capabilities of sophisticated actors. Concretely, BDTs may enable the creation of pandemic pathogens substantially worse than anything seen to date and could enable forms of more predictable and targeted biological weapons. In combination, LLMs and BDTs could raise the ceiling of harm from biological agents and could make them broadly accessible. The differing risk profiles of LLMs and BDTs have important implications for risk mitigation. LLM risks require urgent action and might be effectively mitigated by controlling access to dangerous capabilities. Mandatory pre-release evaluations could be critical to ensure that developers eliminate dangerous capabilities. Science-specific AI tools demand differentiated strategies to allow access to legitimate users while preventing misuse. Meanwhile, risks from BDTs are less defined and require monitoring by developers and policymakers. Key to reducing these risks will be enhanced screening of gene synthesis, interventions to deter biological misuse by sophisticated actors, and exploration of specific controls of BDTs.
Sensitive information is intrinsically tied to interactions in healthcare, and its protection is of paramount importance for achieving high-quality patient outcomes. Research in healthcare privacy and security is predominantly focused on understanding the factors that increase the susceptibility of users to privacy and security breaches. To understand further, we systematically review 26 research papers in this domain to explore the existing user studies in healthcare privacy and security. Following the review, we conducted a card-sorting exercise, allowing us to identify 12 themes integral to this subject such as "Data Sharing," "Risk Awareness," and "Privacy." Further to the identification of these themes, we performed an in-depth analysis of the 26 research papers report on the insights into the discourse within the research community about healthcare privacy and security, particularly from the user perspective.
We consider nonlinear delay differential and renewal equations with infinite delay. We extend the work of Gyllenberg et al, Appl. Math. Comput. (2018) by introducing a unifying abstract framework and derive a finite-dimensional approximating system via pseudospectral discretization. For renewal equations, via integration we consider a reformulation in a space of absolutely continuous functions that ensures that point evaluation is well defined. We prove the one-to-one correspondence of equilibria between the original equation and its approximation, and that linearization and discretization commute. Our most important result is the proof of convergence of the characteristic roots of the pseudospectral approximation of the linear(ized) equations, which ensures that the finite-dimensional system correctly reproduces the stability properties of the original linear equation if the dimension of the approximation is large enough. This result is illustrated with several numerical tests, which also demonstrate the effectiveness of the approach for the bifurcation analysis of equilibria of nonlinear equations.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.