亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We derive consistent and asymptotically normal estimators for the drift and volatility parameters of the stochastic heat equation driven by an additive space-only white noise when the solution is sampled discretely in the physical domain. We consider both the full space and the bounded domain. We establish the exact spatial regularity of the solution, which in turn, using power-variation arguments, allows building the desired estimators. We show that naive approximations of the derivatives appearing in the power-variation based estimators may create nontrivial biases, which we compute explicitly. The proofs are rooted in Malliavin-Stein's method.

相關內容

A general adaptive refinement strategy for solving linear elliptic partial differential equation with random data is proposed and analysed herein. The adaptive strategy extends the a posteriori error estimation framework introduced by Guignard and Nobile in 2018 (SIAM J. Numer. Anal., 56, 3121--3143) to cover problems with a nonaffine parametric coefficient dependence. A suboptimal, but nonetheless reliable and convenient implementation of the strategy involves approximation of the decoupled PDE problems with a common finite element approximation space. Computational results obtained using such a single-level strategy are presented in this paper (part I). Results obtained using a potentially more efficient multilevel approximation strategy, where meshes are individually tailored, will be discussed in part II of this work. The codes used to generate the numerical results are available online.

In this work, we study an inverse problem of recovering a space-time dependent diffusion coefficient in the subdiffusion model from the distributed observation, where the mathematical model involves a Djrbashian-Caputo fractional derivative of order $\alpha\in(0,1)$ in time. The main technical challenges of both theoretical and numerical analysis lie in the limited smoothing properties due to the fractional differential operator and the high degree of nonlinearity of the forward map from the unknown diffusion coefficient to the distributed observation. Theoretically, we establish two conditional stability results using a novel test function, which leads to a stability bound in $L^2(0,T;L^2(\Omega))$ under a suitable positivity condition. The positivity condition is verified for a large class of problem data. Numerically, we develop a rigorous procedure for the recovery of the diffusion coefficient based on a regularized least-squares formulation, which is then discretized by the standard Galerkin method with continuous piecewise linear elements in space and backward Euler convolution quadrature in time. We provide a complete error analysis of the fully discrete formulation, by combining several new error estimates for the direct problem (optimal in terms of data regularity), a discrete version of fractional maximal $L^p$ regularity, and a nonstandard energy argument. Under the positivity condition, we obtain a standard $L^2(0,T; L^2(\Omega))$ error estimate consistent with the conditional stability. Further, we illustrate the analysis with some numerical examples.

We present a space-time multiscale method for a parabolic model problem with an underlying coefficient that may be highly oscillatory with respect to both the spatial and the temporal variables. The method is based on the framework of the Variational Multiscale Method in the context of a space-time formulation and computes a coarse-scale representation of the differential operator that is enriched by auxiliary space-time corrector functions. Once computed, the coarse-scale representation allows us to efficiently obtain well-approximating discrete solutions for multiple right-hand sides. We prove first-order convergence independently of the oscillation scales in the coefficient and illustrate how the space-time correctors decay exponentially in both space and time, making it possible to localize the corresponding computations. This localization allows us to define a practical and computationally efficient method in terms of complexity and memory, for which we provide a posteriori error estimates and present numerical examples.

Time-space fractional Bloch-Torrey equations are developed by some researchers to investigate the relationship between diffusion and fractional-order dynamics. In this paper, we first propose a second-order scheme for this equation by employing the recently proposed L2-type formula [A.~A.~Alikhanov, C.~Huang, Appl.~Math.~Comput.~(2021) 126545]. Then, we prove the stability and the convergence of this scheme. Based on such the numerical scheme, a L2-type all-at-once system is derived. In order to solve this system in a parallel-in-time pattern, a bilateral preconditioning technique is designed according to the special structure of the system. We theoretically show that the condition number of the preconditioned matrix is uniformly bounded by a constant for the time fractional order $\alpha \in (0,0.3624)$. Numerical results are reported to show the efficiency of our method.

We study a finite-element based space-time discretisation for the 2D stochastic Navier-Stokes equations in a bounded domain supplemented with no-slip boundary conditions. We prove optimal convergence rates in the energy norm with respect to convergence in probability, that is convergence of order (almost) 1/2 in time and 1 in space. This was previously only known in the space-periodic case, where higher order energy estimates for any given (deterministic) time are available. In contrast to this, in the Dirichlet-case estimates are only known for a (possibly large) stopping time. We overcome this problem by introducing an approach based on discrete stopping times. This replaces the localised estimates (with respect to the sample space) from earlier contributions.

We consider the estimation of densities in multiple subpopulations, where the available sample size in each subpopulation greatly varies. This problem occurs in epidemiology, for example, where different diseases may share similar pathogenic mechanism but differ in their prevalence. Without specifying a parametric form, our proposed method pools information from the population and estimate the density in each subpopulation in a data-driven fashion. Drawing from functional data analysis, low-dimensional approximating density families in the form of exponential families are constructed from the principal modes of variation in the log-densities. Subpopulation densities are subsequently fitted in the approximating families based on likelihood principles and shrinkage. The approximating families increase in their flexibility as the number of components increases and can approximate arbitrary infinite-dimensional densities. We also derive convergence results of the density estimates with discrete observations. The proposed methods are shown to be interpretable and efficient in simulation as well as applications to electronic medical record and rainfall data.

Stochastic optimal principle leads to the resolution of a partial differential equation (PDE), namely the Hamilton-Jacobi-Bellman (HJB) equation. In general, this equation cannot be solved analytically, thus numerical algorithms are the only tools to provide accurate approximations. The aims of this paper is to introduce a novel fitted finite volume method to solve high dimensional degenerated HJB equation from stochastic optimal control problems in high dimension ($ n\geq 3$). The challenge here is due to the nature of our HJB equation which is a degenerated second-order partial differential equation coupled with an optimization problem. For such problems, standard scheme such as finite difference method losses its monotonicity and therefore the convergence toward the viscosity solution may not be guarantee. We discretize the HJB equation using the fitted finite volume method, well known to tackle degenerated PDEs, while the time discretisation is performed using the Implicit Euler scheme. We show that matrices resulting from spatial discretization and temporal discretization are M--matrices. Numerical results in finance demonstrating the accuracy of the proposed numerical method comparing to the standard finite difference method are provided.

In this paper, we present an interior penalty discontinuous Galerkin finite element scheme for solving diffusion problems with strong anisotropy arising in magnetized plasmas for fusion applications. We demonstrate the accuracy produced by the high-order scheme and develop an efficient preconditioning technique to solve the corresponding linear system, which is robust to the mesh size and anisotropy of the problem. Several numerical tests are provided to validate the accuracy and efficiency of the proposed algorithm.

In this paper, we use an implicit two-derivative deferred correction time discretization approach and combine it with a spatial discretization of the discontinuous Galerkin spectral element method to solve (non-)linear PDEs. The resulting numerical method is high order accurate in space and time. As the novel scheme handles two time derivatives, the spatial operator for both derivatives has to be defined. This results in an extended system matrix of the scheme. We analyze this matrix regarding possible simplifications and an efficient way to solve the arising (non-)linear system of equations. It is shown how a carefully designed preconditioner and a matrix-free approach allow for an efficient implementation and application of the novel scheme. For both, linear advection and the compressible Euler equations, up to eighth order of accuracy in time is shown. Finally, it is illustrated how the method can be used to approximate solutions to the compressible Navier-Stokes equations.

This paper develops an asymptotic theory for estimating the time-varying characteristics of locally stationary functional time series. We introduce a kernel-based method to estimate the time-varying covariance operator and the time-varying mean function of a locally stationary functional time series. Subsequently, we derive the convergence rate of the kernel estimator of the covariance operator and associated eigenvalue and eigenfunctions. We also establish a central limit theorem for the kernel-based locally weighted sample mean. As applications of our results, we discuss the prediction of locally stationary functional time series and methods for testing the equality of time-varying mean functions in two functional samples.

北京阿比特科技有限公司