One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than a single quantum gate per data point for data-processing instructions which would be rather expensive in classical computing. Formulating such instructions in terms of quantum gates, however, still remains a challenging task. Laying out the foundational functions for more advanced data-processing is therefore a subject of paramount importance for advancing the realm of quantum computing. In this paper, we introduce the formalism of encoding so called-semi-boolean polynomials. As it turns out, arithmetic $\mathbb{Z}/2^n\mathbb{Z}$ ring operations can be formulated as semi-boolean polynomial evaluations, which allows convenient generation of unsigned integer arithmetic quantum circuits. For arithmetic evaluations, the resulting algorithm has been known as Fourier-arithmetic. We extend this type of algorithm with additional features, such as ancilla-free in-place multiplication and integer coefficient polynomial evaluation. Furthermore, we introduce a tailor-made method for encoding signed integers succeeded by an encoding for arbitrary floating-point numbers. This representation of floating-point numbers and their processing can be applied to any quantum algorithm that performs unsigned modular integer arithmetic. We discuss some further performance enhancements of the semi boolean polynomial encoder and finally supply a complexity estimation. The application of our methods to a 32-bit unsigned integer multiplication demonstrated a 90\% circuit depth reduction compared to carry-ripple approaches.
The emergence of quantum computers as a new computational paradigm has been accompanied by speculation concerning the scope and timeline of their anticipated revolutionary changes. While quantum computing is still in its infancy, the variety of different architectures used to implement quantum computations make it difficult to reliably measure and compare performance. This problem motivates our introduction of SupermarQ, a scalable, hardware-agnostic quantum benchmark suite which uses application-level metrics to measure performance. SupermarQ is the first attempt to systematically apply techniques from classical benchmarking methodology to the quantum domain. We define a set of feature vectors to quantify coverage, select applications from a variety of domains to ensure the suite is representative of real workloads, and collect benchmark results from the IBM, IonQ, and AQT@LBNL platforms. Looking forward, we envision that quantum benchmarking will encompass a large cross-community effort built on open source, constantly evolving benchmark suites. We introduce SupermarQ as an important step in this direction.
The Quantum CONGEST model is a variant of the CONGEST model, where messages consist of $O(\log(n))$ qubits. We give a general framework for implementing quantum query algorithms in Quantum CONGEST, using the concept of parallel-queries. We apply our framework for distributed quantum queries in two settings: when data is distributed over the network, and graph theoretical problems where the network defines the input. The first is slightly unusual in CONGEST but our results follow almost directly. The second is more traditional for the CONGEST model but here we require some classical CONGEST steps to get our results. In the setting with distributed data, we show how a network can schedule a meeting in one of $k$ dates using $\tilde{O}(\sqrt{kD}+D)$ rounds, with $D$ the network diameter. We also give an efficient algorithm for element distinctness: if all nodes are given numbers, then the nodes can find any duplicates in $\tilde{O}(n^{2/3}D^{1/3})$ rounds. We also generalize the protocol for the distributed Deutsch-Jozsa problem from the two-party setting considered in [arXiv:quant-ph/9802040] to general networks, giving a novel separation between exact classical and exact quantum protocols in CONGEST. When the input is the network structure itself, we almost directly recover the $O(\sqrt{nD})$ round diameter computation algorithm of Le Gall and Magniez [arXiv:1804.02917]. We also compute the radius in the same number of rounds, and give an $\epsilon$-additive approximation of the average eccentricity in $\tilde{O}(D+D^{3/2}/\epsilon)$ rounds. Finally, we give quantum speedups for the problems of cycle detection and girth computation. We detect whether a graph has a cycle of length at most $k$ in $O(D+(Dn)^{1/2-1/\Theta(k)})$ rounds. We also give a $\tilde{O}(D+(Dn)^{1/2-1/\Theta(g)})$ round algorithm for finding the girth $g$, beating the known classical lower bound.
In this paper, we study the problem of learning an unknown quantum circuit of a certain structure. If the unknown target is an $n$-qubit Clifford circuit, we devise an efficient algorithm to reconstruct its circuit representation by using $O(n^2)$ queries to it. For decades, it has been unknown how to handle circuits beyond the Clifford group since the stabilizer formalism cannot be applied in this case. Herein, we study quantum circuits of $T$-depth one on the computational basis. We show that the output state of a $T$-depth one circuit can be represented by a stabilizer pseudomixture with a specific algebraic structure. Using Pauli and Bell measurements on copies of the output states, we can generate a hypothesis circuit that is equivalent to the unknown target circuit on computational basis states as input. If the number of $T$ gates of the target is of the order $O({{\log n}})$, our algorithm requires $O(n^2)$ queries to it and produces its equivalent circuit representation on the computational basis in time $O(n^3)$. Using further additional $O(4^{3n})$ classical computations, we can derive an exact description of the target for arbitrary input states. Our results greatly extend the previously known facts that stabilizer states can be efficiently identified based on the stabilizer formalism.
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usually assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolerant versions of quantum capacities quantifying the optimal communication rates achievable with asymptotically vanishing total error when the encoding and decoding circuits are affected by gate errors with small probability. Our main results are threshold theorems for the classical and quantum capacity: For every quantum channel $T$ and every $\epsilon>0$ there exists a threshold $p(\epsilon,T)$ for the gate error probability below which rates larger than $C-\epsilon$ are fault-tolerantly achievable with vanishing overall communication error, where $C$ denotes the usual capacity. Our results are not only relevant in communication over large distances, but also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise than affecting the local gates.
We introduce a notion of \emph{generic local algorithm} which strictly generalizes existing frameworks of local algorithms such as \emph{factors of i.i.d.} by capturing local \emph{quantum} algorithms such as the Quantum Approximate Optimization Algorithm (QAOA). Motivated by a question of Farhi et al. [arXiv:1910.08187, 2019] we then show limitations of generic local algorithms including QAOA on random instances of constraint satisfaction problems (CSPs). Specifically, we show that any generic local algorithm whose assignment to a vertex depends only on a local neighborhood with $o(n)$ other vertices (such as the QAOA at depth less than $\epsilon\log(n)$) cannot arbitrarily-well approximate boolean CSPs if the problem satisfies a geometric property from statistical physics called the coupled overlap-gap property (OGP) [Chen et al., Annals of Probability, 47(3), 2019]. We show that the random MAX-k-XOR problem has this property when $k\geq4$ is even by extending the corresponding result for diluted $k$-spin glasses. Our concentration lemmas confirm a conjecture of Brandao et al. [arXiv:1812.04170, 2018] asserting that the landscape independence of QAOA extends to logarithmic depth -- in other words, for every fixed choice of QAOA angle parameters, the algorithm at logarithmic depth performs almost equally well on almost all instances. One of these concentration lemmas is a strengthening of McDiarmid's inequality, applicable when the random variables have a highly biased distribution, and may be of independent interest.
The time-ordered exponential is defined as the function that solves a system of coupled first-order linear differential equations with generally non-constant coefficients. In spite of being at the heart of much system dynamics, control theory, and model reduction problems, the time-ordered exponential function remains elusively difficult to evaluate. The *-Lanczos algorithm is a (symbolic) algorithm capable of evaluating it by producing a tridiagonalization of the original differential system. In this paper, we explain how the *-Lanczos algorithm is built from a generalization of Krylov subspaces, and we prove crucial properties, such as the matching moment property. A strategy for its numerical implementation is also outlined and will be subject of future investigation.
The six-vertex model is an important model in statistical physics and has deep connections with counting problems. There have been some fully polynomial randomized approximation schemes (FPRAS) for the six-vertex model [30, 10], which all require that the constraint functions are windable. In the present paper, we give an FPRAS for the six-vertex model with an unwindable constraint function by Markov Chain Monte Carlo method (MCMC). Different from [10], we use the Glauber dynamics to design the Markov Chain depending on a circuit decomposition of the underlying graph. Moreover, we prove the rapid mixing of the Markov Chain by coupling, instead of canonical paths in [10].
Despite increasing accessibility to function data, effective methods for flexibly estimating underlying functional trend are still scarce. We thereby develop functional version of trend filtering for estimating trend of functional data indexed by time or on general graph by extending the conventional trend filtering, a powerful nonparametric trend estimation technique, for scalar data. We formulate the new trend filtering by introducing penalty terms based on $L_2$-norm of the differences of adjacent trend functions. We develop an efficient iteration algorithm for optimizing the objective function obtained by orthonormal basis expansion. Furthermore, we introduce additional penalty terms to eliminate redundant basis functions, which leads to automatic adaptation of the number of basis functions. The tuning parameter in the proposed method is selected via cross validation. We demonstrate the proposed method through simulation studies and applications to real world datasets.
We introduce the hemicubic codes, a family of quantum codes obtained by associating qubits with the $p$-faces of the $n$-cube (for $n>p$) and stabilizer constraints with faces of dimension $(p\pm1)$. The quantum code obtained by identifying antipodal faces of the resulting complex encodes one logical qubit into $N = 2^{n-p-1} \tbinom{n}{p}$ physical qubits and displays local testability with a soundness of $\Omega(1/\log(N))$ beating the current state-of-the-art of $1/\log^{2}(N)$ due to Hastings. We exploit this local testability to devise an efficient decoding algorithm that corrects arbitrary errors of size less than the minimum distance, up to polylog factors. We then extend this code family by considering the quotient of the $n$-cube by arbitrary linear classical codes of length $n$. We establish the parameters of these generalized hemicubic codes. Interestingly, if the soundness of the hemicubic code could be shown to be constant, similarly to the ordinary $n$-cube, then the generalized hemicubic codes could yield quantum locally testable codes of length not exceeding an exponential or even polynomial function of the code dimension.
The ZX-calculus is a graphical language for reasoning about quantum computation using ZX-diagrams, a certain flexible generalisation of quantum circuits that can be used to represent linear maps from $m$ to $n$ qubits for any $m,n \geq 0$. Some applications for the ZX-calculus, such as quantum circuit optimisation and synthesis, rely on being able to efficiently translate a ZX-diagram back into a quantum circuit of comparable size. While several sufficient conditions are known for describing families of ZX-diagrams that can be efficiently transformed back into circuits, it has previously been conjectured that the general problem of circuit extraction is hard. That is, that it should not be possible to efficiently convert an arbitrary ZX-diagram describing a unitary linear map into an equivalent quantum circuit. In this paper we prove this conjecture by showing that the circuit extraction problem is #P-hard, and so is itself at least as hard as strong simulation of quantum circuits. In addition to our main hardness result, which relies specifically on the circuit representation, we give a representation-agnostic hardness result. Namely, we show that any oracle that takes as input a ZX-diagram description of a unitary and produces samples of the output of the associated quantum computation enables efficient probabilistic solutions to NP-complete problems.