Traceability allows stakeholders to extract and comprehend the trace links among software artifacts introduced across the software life cycle, to provide significant support for software engineering tasks. Despite its proven benefits, software traceability is challenging to recover and maintain manually. Hence, plenty of approaches for automated traceability have been proposed. Most rely on textual similarities among software artifacts, such as those based on Information Retrieval (IR). However, artifacts in different abstraction levels usually have different textual descriptions, which can greatly hinder the performance of IR-based approaches (e.g., a requirement in natural language may have a small textual similarity to a Java class). In this work, we leverage the consensual biterms and transitive relationships (i.e., inner- and outer-transitive links) based on intermediate artifacts to improve IR-based traceability recovery. We first extract and filter biterms from all source, intermediate, and target artifacts. We then use the consensual biterms from the intermediate artifacts to extend the biterms of both source and target artifacts, and finally deduce outer and inner-transitive links to adjust text similarities between source and target artifacts. We conducted a comprehensive empirical evaluation based on five systems widely used in other literature to show that our approach can outperform four state-of-the-art approaches, and how its performance is affected by different conditions of source, intermediate, and target artifacts. The results indicate that our approach can outperform baseline approaches in AP over 15% and MAP over 10% on average.
Estimating mutual correlations between random variables or data streams is essential for intelligent behavior and decision-making. As a fundamental quantity for measuring statistical relationships, mutual information has been extensively studied and utilized for its generality and equitability. However, existing methods often lack the efficiency needed for real-time applications, such as test-time optimization of a neural network, or the differentiability required for end-to-end learning, like histograms. We introduce a neural network called InfoNet, which directly outputs mutual information estimations of data streams by leveraging the attention mechanism and the computational efficiency of deep learning infrastructures. By maximizing a dual formulation of mutual information through large-scale simulated training, our approach circumvents time-consuming test-time optimization and offers generalization ability. We evaluate the effectiveness and generalization of our proposed mutual information estimation scheme on various families of distributions and applications. Our results demonstrate that InfoNet and its training process provide a graceful efficiency-accuracy trade-off and order-preserving properties. We will make the code and models available as a comprehensive toolbox to facilitate studies in different fields requiring real-time mutual information estimation.
The human-like automatic deductive reasoning has always been one of the most challenging open problems in the interdiscipline of mathematics and artificial intelligence. This paper is the third in a series of our works. We built a neural-symbolic system, called FGeoDRL, to automatically perform human-like geometric deductive reasoning. The neural part is an AI agent based on reinforcement learning, capable of autonomously learning problem-solving methods from the feedback of a formalized environment, without the need for human supervision. It leverages a pre-trained natural language model to establish a policy network for theorem selection and employ Monte Carlo Tree Search for heuristic exploration. The symbolic part is a reinforcement learning environment based on geometry formalization theory and FormalGeo, which models GPS as a Markov Decision Process. In this formal symbolic system, the known conditions and objectives of the problem form the state space, while the set of theorems forms the action space. Leveraging FGeoDRL, we have achieved readable and verifiable automated solutions to geometric problems. Experiments conducted on the formalgeo7k dataset have achieved a problem-solving success rate of 86.40%. The project is available at //github.com/PersonNoName/FGeoDRL.
Decades of progress in energy-efficient and low-power design have successfully reduced the operational carbon footprint in the semiconductor industry. However, this has led to an increase in embodied emissions, encompassing carbon emissions arising from design, manufacturing, packaging, and other infrastructural activities. While existing research has developed tools to analyze embodied carbon at the computer architecture level for traditional monolithic systems, these tools do not apply to near-mainstream heterogeneous integration (HI) technologies. HI systems offer significant potential for sustainable computing by minimizing carbon emissions through two key strategies: ``reducing" computation by reusing pre-designed chiplet IP blocks and adopting hierarchical approaches to system design. The reuse of chiplets across multiple designs, even spanning multiple generations of integrated circuits (ICs), can substantially reduce embodied carbon emissions throughout the operational lifespan. This paper introduces a carbon analysis tool specifically designed to assess the potential of HI systems in facilitating greener VLSI system design and manufacturing approaches. The tool takes into account scaling, chiplet and packaging yields, design complexity, and even carbon overheads associated with advanced packaging techniques employed in heterogeneous systems. Experimental results demonstrate that HI can achieve a reduction of embodied carbon emissions up to 70\% compared to traditional large monolithic systems. These findings suggest that HI can pave the way for sustainable computing practices, contributing to a more environmentally conscious semiconductor industry.
Self-Admitted Technical Debt (SATD) annotates development decisions that intentionally exchange long-term software artifact quality for short-term goals. Recent work explores the existence of SATD clones (duplicate or near duplicate SATD comments) in source code. Cloning of SATD in build systems (e.g., CMake and Maven) may propagate suboptimal design choices, threatening qualities of the build system that stakeholders rely upon (e.g., maintainability, reliability, repeatability). Hence, we conduct a large-scale study on 50,608 SATD comments extracted from Autotools, CMake, Maven, and Ant build systems to investigate the prevalence of SATD clones and to characterize their incidences. We observe that: (i) prior work suggests that 41-65% of SATD comments in source code are clones, but in our studied build system context, the rates range from 62% to 95%, suggesting that SATD clones are a more prevalent phenomenon in build systems than in source code; (ii) statements surrounding SATD clones are highly similar, with 76% of occurrences having similarity scores greater than 0.8; (iii) a quarter of SATD clones are introduced by the author of the original SATD statements; and (iv) among the most commonly cloned SATD comments, external factors (e.g., platform and tool configuration) are the most frequent locations, limitations in tools and libraries are the most frequent causes, and developers often copy SATD comments that describe issues to be fixed later. Our work presents the first step toward systematically understanding SATD clones in build systems and opens up avenues for future work, such as distinguishing different SATD clone behavior, as well as designing an automated recommendation system for repaying SATD effectively based on resolved clones.
Biometric systems based on brain activity have been proposed as an alternative to passwords or to complement current authentication techniques. By leveraging the unique brainwave patterns of individuals, these systems offer the possibility of creating authentication solutions that are resistant to theft, hands-free, accessible, and potentially even revocable. However, despite the growing stream of research in this area, faster advance is hindered by reproducibility problems. Issues such as the lack of standard reporting schemes for performance results and system configuration, or the absence of common evaluation benchmarks, make comparability and proper assessment of different biometric solutions challenging. Further, barriers are erected to future work when, as so often, source code is not published open access. To bridge this gap, we introduce NeuroBench, a flexible open source tool to benchmark brainwave-based authentication models. It incorporates nine diverse datasets, implements a comprehensive set of pre-processing parameters and machine learning algorithms, enables testing under two common adversary models (known vs unknown attacker), and allows researchers to generate full performance reports and visualizations. We use NeuroBench to investigate the shallow classifiers and deep learning-based approaches proposed in the literature, and to test robustness across multiple sessions. We observe a 37.6\% reduction in Equal Error Rate (EER) for unknown attacker scenarios (typically not tested in the literature), and we highlight the importance of session variability to brainwave authentication. All in all, our results demonstrate the viability and relevance of NeuroBench in streamlining fair comparisons of algorithms, thereby furthering the advancement of brainwave-based authentication through robust methodological practices.
Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at //github.com/Sohanpatnaik106/CABINET_QA.
We propose and analyze an adaptive adversary that can retrain a Trojaned DNN and is also aware of SOTA output-based Trojaned model detectors. We show that such an adversary can ensure (1) high accuracy on both trigger-embedded and clean samples and (2) bypass detection. Our approach is based on an observation that the high dimensionality of the DNN parameters provides sufficient degrees of freedom to simultaneously achieve these objectives. We also enable SOTA detectors to be adaptive by allowing retraining to recalibrate their parameters, thus modeling a co-evolution of parameters of a Trojaned model and detectors. We then show that this co-evolution can be modeled as an iterative game, and prove that the resulting (optimal) solution of this interactive game leads to the adversary successfully achieving the above objectives. In addition, we provide a greedy algorithm for the adversary to select a minimum number of input samples for embedding triggers. We show that for cross-entropy or log-likelihood loss functions used by the DNNs, the greedy algorithm provides provable guarantees on the needed number of trigger-embedded input samples. Extensive experiments on four diverse datasets -- MNIST, CIFAR-10, CIFAR-100, and SpeechCommand -- reveal that the adversary effectively evades four SOTA output-based Trojaned model detectors: MNTD, NeuralCleanse, STRIP, and TABOR.
Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.
Most existing knowledge graphs suffer from incompleteness, which can be alleviated by inferring missing links based on known facts. One popular way to accomplish this is to generate low-dimensional embeddings of entities and relations, and use these to make inferences. ConvE, a recently proposed approach, applies convolutional filters on 2D reshapings of entity and relation embeddings in order to capture rich interactions between their components. However, the number of interactions that ConvE can capture is limited. In this paper, we analyze how increasing the number of these interactions affects link prediction performance, and utilize our observations to propose InteractE. InteractE is based on three key ideas -- feature permutation, a novel feature reshaping, and circular convolution. Through extensive experiments, we find that InteractE outperforms state-of-the-art convolutional link prediction baselines on FB15k-237. Further, InteractE achieves an MRR score that is 9%, 7.5%, and 23% better than ConvE on the FB15k-237, WN18RR and YAGO3-10 datasets respectively. The results validate our central hypothesis -- that increasing feature interaction is beneficial to link prediction performance. We make the source code of InteractE available to encourage reproducible research.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.