Coordination is a desirable feature in multi-agent systems, allowing the execution of tasks that would be impossible by individual agents. We study coordination by a team of strategic agents choosing to undertake one of the multiple tasks. We adopt a stochastic framework where the agents decide between two distinct tasks whose difficulty is randomly distributed and partially observed. We show that a Nash equilibrium with a simple and intuitive linear structure exists for diffuse prior distributions on the task difficulties. Additionally, we show that the best response of any agent to an affine strategy profile can be nonlinear when the prior distribution is not diffuse. Finally, we state an algorithm that allows us to efficiently compute a data-driven Nash equilibrium within the class of affine policies.
The output distribution of a neural network (NN) over the entire input space captures the complete input-output mapping relationship, offering insights toward a more comprehensive NN understanding. Exhaustive enumeration or traditional Monte Carlo methods for the entire input space can exhibit impractical sampling time, especially for high-dimensional inputs. To make such difficult sampling computationally feasible, in this paper, we propose a novel Gradient-based Wang-Landau (GWL) sampler. We first draw the connection between the output distribution of a NN and the density of states (DOS) of a physical system. Then, we renovate the classic sampler for the DOS problem, the Wang-Landau algorithm, by replacing its random proposals with gradient-based Monte Carlo proposals. This way, our GWL sampler investigates the under-explored subsets of the input space much more efficiently. Extensive experiments have verified the accuracy of the output distribution generated by GWL and also showcased several interesting findings - for example, in a binary image classification task, both CNN and ResNet mapped the majority of human unrecognizable images to very negative logit values.
In communication restricted environments, a multi-robot system can be deployed to either: i) maintain constant communication but potentially sacrifice operational efficiency due to proximity constraints or ii) allow disconnections to increase environmental coverage efficiency, challenges on how, when, and where to reconnect (rendezvous problem). In this work we tackle the latter problem and notice that most state-of-the-art methods assume that robots will be able to execute a predetermined plan; however system failures and changes in environmental conditions can cause the robots to deviate from the plan with cascading effects across the multi-robot system. This paper proposes a coordinated epistemic prediction and planning framework to achieve consensus without communicating for exploration and coverage, task discovery and completion, and rendezvous applications. Dynamic epistemic logic is the principal component implemented to allow robots to propagate belief states and empathize with other agents. Propagation of belief states and subsequent coverage of the environment is achieved via a frontier-based method within an artificial physics-based framework. The proposed framework is validated with both simulations and experiments with unmanned ground vehicles in various cluttered environments.
In modern communication systems with feedback, there are increasingly more scenarios where the transmitter has much less power than the receiver (e.g., medical implant devices), which we refer to as noise-asymmetric channels. For such channels, the feedback link is of higher quality than the forward link. However, feedback schemes for cellular communications, such as hybrid ARQ, do not fully utilize the high-quality feedback link. To this end, we introduce Compressed Error Hybrid ARQ, a generalization of hybrid ARQ tailored for noise-asymmetric channels; the receiver sends its estimated message to the transmitter, and the transmitter harmoniously switches between hybrid ARQ and compressed error retransmission. We show that our proposed method significantly improves reliability, latency, and spectral efficiency compared to the conventional hybrid ARQ in various practical scenarios where the transmitter is resource-constrained.
In federated learning, a large number of users are involved in a global learning task, in a collaborative way. They alternate local computations and communication with a distant server. Communication, which can be slow and costly, is the main bottleneck in this setting. To accelerate distributed gradient descent, the popular strategy of local training is to communicate less frequently; that is, to perform several iterations of local computations between the communication steps. A recent breakthrough in this field was made by Mishchenko et al. (2022): their Scaffnew algorithm is the first to probably benefit from local training, with accelerated communication complexity. However, it was an open and challenging question to know whether the powerful mechanism behind Scaffnew would be compatible with partial participation, the desirable feature that not all clients need to participate to every round of the training process. We answer this question positively and propose a new algorithm, which handles local training and partial participation, with state-of-the-art communication complexity.
Task automation of surgical robot has the potentials to improve surgical efficiency. Recent reinforcement learning (RL) based approaches provide scalable solutions to surgical automation, but typically require extensive data collection to solve a task if no prior knowledge is given. This issue is known as the exploration challenge, which can be alleviated by providing expert demonstrations to an RL agent. Yet, how to make effective use of demonstration data to improve exploration efficiency still remains an open challenge. In this work, we introduce Demonstration-guided EXploration (DEX), an efficient reinforcement learning algorithm that aims to overcome the exploration problem with expert demonstrations for surgical automation. To effectively exploit demonstrations, our method estimates expert-like behaviors with higher values to facilitate productive interactions, and adopts non-parametric regression to enable such guidance at states unobserved in demonstration data. Extensive experiments on $10$ surgical manipulation tasks from SurRoL, a comprehensive surgical simulation platform, demonstrate significant improvements in the exploration efficiency and task success rates of our method. Moreover, we also deploy the learned policies to the da Vinci Research Kit (dVRK) platform to show the effectiveness on the real robot. Code is available at //github.com/med-air/DEX.
We enable efficient and effective coordination in unpredictable environments, i.e., in environments whose future evolution is unknown a priori and even adversarial. We are motivated by the future of autonomy that involves multiple robots coordinating in dynamic, unstructured, and adversarial environments to complete complex tasks such as target tracking, environmental mapping, and area monitoring. Such tasks are often modeled as submodular maximization coordination problems. We introduce the first submodular coordination algorithm with bounded tracking regret, i.e., with bounded suboptimality with respect to optimal time-varying actions that know the future a priori. The bound gracefully degrades with the environments' capacity to change adversarially. It also quantifies how often the robots must re-select actions to "learn" to coordinate as if they knew the future a priori. The algorithm requires the robots to select actions sequentially based on the actions selected by the previous robots in the sequence. Particularly, the algorithm generalizes the seminal Sequential Greedy algorithm by Fisher et al. to unpredictable environments, leveraging submodularity and algorithms for the problem of tracking the best expert. We validate our algorithm in simulated scenarios of target tracking.
The inevitable feature deviation of synthetic aperture radar (SAR) image due to the special imaging principle (depression angle variation) leads to poor recognition accuracy, especially in few-shot learning (FSL). To deal with this problem, we propose a dense graph prototype network (DGP-Net) to eliminate the feature deviation by learning potential features, and classify by learning feature distribution. The role of the prototype in this model is to solve the problem of large distance between congeneric samples taken due to the contingency of single sampling in FSL, and enhance the robustness of the model. Experimental results on the MSTAR dataset show that the DGP-Net has good classification results for SAR images with different depression angles and the recognition accuracy of it is higher than typical FSL methods.
Deep Learning algorithms have achieved the state-of-the-art performance for Image Classification and have been used even in security-critical applications, such as biometric recognition systems and self-driving cars. However, recent works have shown those algorithms, which can even surpass the human capabilities, are vulnerable to adversarial examples. In Computer Vision, adversarial examples are images containing subtle perturbations generated by malicious optimization algorithms in order to fool classifiers. As an attempt to mitigate these vulnerabilities, numerous countermeasures have been constantly proposed in literature. Nevertheless, devising an efficient defense mechanism has proven to be a difficult task, since many approaches have already shown to be ineffective to adaptive attackers. Thus, this self-containing paper aims to provide all readerships with a review of the latest research progress on Adversarial Machine Learning in Image Classification, however with a defender's perspective. Here, novel taxonomies for categorizing adversarial attacks and defenses are introduced and discussions about the existence of adversarial examples are provided. Further, in contrast to exisiting surveys, it is also given relevant guidance that should be taken into consideration by researchers when devising and evaluating defenses. Finally, based on the reviewed literature, it is discussed some promising paths for future research.
A key requirement for the success of supervised deep learning is a large labeled dataset - a condition that is difficult to meet in medical image analysis. Self-supervised learning (SSL) can help in this regard by providing a strategy to pre-train a neural network with unlabeled data, followed by fine-tuning for a downstream task with limited annotations. Contrastive learning, a particular variant of SSL, is a powerful technique for learning image-level representations. In this work, we propose strategies for extending the contrastive learning framework for segmentation of volumetric medical images in the semi-supervised setting with limited annotations, by leveraging domain-specific and problem-specific cues. Specifically, we propose (1) novel contrasting strategies that leverage structural similarity across volumetric medical images (domain-specific cue) and (2) a local version of the contrastive loss to learn distinctive representations of local regions that are useful for per-pixel segmentation (problem-specific cue). We carry out an extensive evaluation on three Magnetic Resonance Imaging (MRI) datasets. In the limited annotation setting, the proposed method yields substantial improvements compared to other self-supervision and semi-supervised learning techniques. When combined with a simple data augmentation technique, the proposed method reaches within 8% of benchmark performance using only two labeled MRI volumes for training, corresponding to only 4% (for ACDC) of the training data used to train the benchmark.
In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.