亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this manuscript, we propose to use a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator. The variational autoencoder models the underlying unknown data distribution as conditionally Gaussian, yielding the conditional first and second moments of the estimand, given a noisy observation. The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem. We propose three estimator variants that differ in their access to ground-truth data during the training and estimation phases. The proposed estimator variant trained solely on noisy observations is particularly noteworthy as it does not require access to ground-truth data during training or estimation. We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator, connecting the training objective and the resulting estimation performance. Furthermore, the resulting bound reveals that the proposed estimator entails a bias-variance tradeoff, which is well-known in the estimation literature. As an example application, we portray channel estimation, allowing for a structured covariance matrix parameterization and low-complexity implementation. Nevertheless, the proposed framework is not limited to channel estimation but can be applied to a broad class of estimation problems. Extensive numerical simulations first validate the theoretical analysis of the proposed variational autoencoder-based estimators and then demonstrate excellent estimation performance compared to related classical and machine learning-based state-of-the-art estimators.

相關內容

Batched sparse (BATS) code is a class of batched network code that can achieve a close-to-optimal rate when an optimal degree distribution is provided. We observed that most probability masses in this optimal distribution are very small, i.e., the distribution "looks" sparse. In this paper, we investigate the sparsity optimization of degree distribution for BATS codes that produces sparse degree distributions. There are many advantages to use a sparse degree distribution, say, it is robust to precision errors when sampling the degree distribution during encoding and decoding in practice. We discuss a few heuristics and also a way to obtain an exact sparsity solution. These approaches give a trade-off between computational time and achievable rate, thus give us the flexibility to adopt BATS codes in various scenarios, e.g., device with limited computational power, stable channel condition, etc.

Motivated by the importance of dynamic programming (DP) in parameterized complexity, we consider several fine-grained questions, such as the following examples: (i) can Dominating Set be solved in time $(3-\epsilon)^{pw}n^{O(1)}$? (where $pw$ is the pathwidth) (ii) can Coloring be solved in time $pw^{(1-\epsilon)pw}n^{O(1)}$? (iii) can a short reconfiguration between two size-$k$ independent sets be found in time $n^{(1-\epsilon)k}$? Such questions are well-studied: in some cases the answer is No under the SETH, while in others coarse-grained lower bounds are known under the ETH. Even though questions such as the above seem "morally equivalent" as they all ask if a simple DP can be improved, the problems concerned have wildly varying time complexities, ranging from single-exponential FPT to XNLP-complete. This paper's main contribution is to show that, despite their varying complexities, these questions are not just morally equivalent, but in fact they are the same question in disguise. We achieve this by putting forth a natural complexity assumption which we call the Primal Pathwidth-Strong Exponential Time Hypothesis (pw-SETH) and which states that 3-SAT cannot be solved in time $(2-\epsilon)^{pw}n^{O(1)}$, for any $\epsilon>0$, where $pw$ is the pathwidth of the primal graph of the input. We then show that numerous fine-grained questions in parameterized complexity, including the ones above, are equivalent to the pw-SETH, and hence to each other. This allows us to obtain sharp fine-grained lower bounds for problems for which previous lower bounds left a constant in the exponent undetermined, but also to increase our confidence in bounds which were previously known under the SETH, because we show that breaking any one such bound requires breaking all (old and new) bounds; and because we show that the pw-SETH is more plausible than the SETH.

We present a new power method to obtain solutions of eigenvalue problems. The method can determine not only the dominant or lowest eigenvalues but also all eigenvalues without the need for a deflation procedure. The method uses a functional of an operator (or a matrix) to select or filter an eigenvalue. The method can freely select a solution by varying a parameter associated to an estimate of the eigenvalue. The convergence of the method is highly dependent on how closely the parameter to the eigenvalues. In this paper, numerical results of the method are shown to be in excellent agreement with the analytical ones.

This work presents a unified framework for path-parametric planning and control. This formulation is universal as it standardizes the entire spectrum of path-parametric techniques -- from traditional path following to more recent contouring or progress-maximizing Model Predictive Control and Reinforcement Learning -- under a single framework. The ingredients underlying this universality are twofold: First, we present a compact and efficient technique capable of computing singularity-free, smooth and differentiable moving frames. Second, we derive a spatial path parameterization of the Cartesian coordinates applicable to any arbitrary curve without prior assumptions on its parametric speed or moving frame, and that perfectly interplays with the aforementioned path parameterization method. The combination of these two ingredients leads to a planning and control framework that brings togehter existing path-parametric techniques in literature. Aiming to unify all these approaches, we open source PACOR, a software library that implements the presented content, thereby providing a self-contained toolkit for the formulation of path-parametric planning and control methods.

We provide a rigorous convergence proof demonstrating that the well-known semi-analytical Fourier cosine (COS) formula for the inverse Fourier transform of continuous probability distributions can be extended to discrete probability distributions, with the help of spectral filters. We establish general convergence rates for these filters and further show that several classical spectral filters achieve convergence rates one order faster than previously recognized in the literature on the Gibbs phenomenon. Our numerical experiments corroborate the theoretical convergence results. Additionally, we illustrate the computational speed and accuracy of the discrete COS method with applications in computational statistics and quantitative finance. The theoretical and numerical results highlight the method's potential for solving problems involving discrete distributions, particularly when the characteristic function is known, allowing the discrete Fourier transform (DFT) to be bypassed.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司