亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The main computational cost per iteration of adaptive cubic regularization methods for solving large-scale nonconvex problems is the computation of the step $s_k$, which requires an approximate minimizer of the cubic model. We propose a new approach in which this minimizer is sought in a low dimensional subspace that, in contrast to classical approaches, is reused for a number of iterations. A regularized Newton step to correct $s_k$ is also incorporated whenever needed. We show that our method increases efficiency while preserving the worst-case complexity of classical cubic regularized methods. We also explore the use of rational Krylov subspaces for the subspace minimization, to overcome some of the issues encountered when using polynomial Krylov subspaces. We provide several experimental results illustrating the gains of the new approach when compared to classic implementations.

相關內容

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

In the context of finite sums minimization, variance reduction techniques are widely used to improve the performance of state-of-the-art stochastic gradient methods. Their practical impact is clear, as well as their theoretical properties. Stochastic proximal point algorithms have been studied as an alternative to stochastic gradient algorithms since they are more stable with respect to the choice of the stepsize but a proper variance reduced version is missing. In this work, we propose the first study of variance reduction techniques for stochastic proximal point algorithms. We introduce a stochastic proximal version of SVRG, SAGA, and some of their variants for smooth and convex functions. We provide several convergence results for the iterates and the objective function values. In addition, under the Polyak-{\L}ojasiewicz (PL) condition, we obtain linear convergence rates for the iterates and the function values. Our numerical experiments demonstrate the advantages of the proximal variance reduction methods over their gradient counterparts, especially about the stability with respect to the choice of the step size.

The DPG method with optimal test functions for solving linear quadratic optimal control problems with control constraints is studied. We prove existence of a unique optimal solution of the nonlinear discrete problem and characterize it through first order optimality conditions. Furthermore, we systematically develop a priori as well as a posteriori error estimates. Our proposed method can be applied to a wide range of constrained optimal control problems subject to, e.g., scalar second-order PDEs and the Stokes equations. Numerical experiments that illustrate our theoretical findings are presented.

The probe and singular sources methods are well-known two classical direct reconstruction methods in inverse obstacle problems governed by partial differential equations. The common part of both methods is the notion of the indicator functions which are defined outside an unknown obstacle and blow up on the surface of the obstacle. However, their appearance is completely different. In this paper, by considering an inverse obstacle problem governed by the Laplace equation in a bounded domain as a prototype case, an integrated version of the probe and singular sources methods which fills the gap between their indicator functions is introduced. The main result is decomposed into three parts. First, the singular sources method combined with the probe method and notion of the Carleman function is formulated. Second, the indicator functions of both methods can be obtained as a result of decomposing a third indicator function into two ways. The third indicator function blows up on both the outer and obstacle surfaces. Third, the probe and singular sources methods are reformulated and it is shown that the indicator functions on which both reformulated methods based, completely coincide with each other. As a byproduct, it turns out that the reformulated singular sources method has also the Side B of the probe method, which is a characterization of the unknown obstacle by means of the blowing up property of an indicator sequence.

This paper develops power series expansions of a general class of moment functions, including transition densities and option prices, of continuous-time Markov processes, including jump--diffusions. The proposed expansions extend the ones in Kristensen and Mele (2011) to cover general Markov processes. We demonstrate that the class of expansions nests the transition density and option price expansions developed in Yang, Chen, and Wan (2019) and Wan and Yang (2021) as special cases, thereby connecting seemingly different ideas in a unified framework. We show how the general expansion can be implemented for fully general jump--diffusion models. We provide a new theory for the validity of the expansions which shows that series expansions are not guaranteed to converge as more terms are added in general. Thus, these methods should be used with caution. At the same time, the numerical studies in this paper demonstrate good performance of the proposed implementation in practice when a small number of terms are included.

Local modifications of a computational domain are often performed in order to simplify the meshing process and to reduce computational costs and memory requirements. However, removing geometrical features of a domain often introduces a non-negligible error in the solution of a differential problem in which it is defined. In this work, we extend the results from [1] by studying the case of domains containing an arbitrary number of distinct Neumann features, and by performing an analysis on Poisson's, linear elasticity, and Stokes' equations. We introduce a simple, computationally cheap, reliable, and efficient a posteriori estimator of the geometrical defeaturing error. Moreover, we also introduce a geometric refinement strategy that accounts for the defeaturing error: Starting from a fully defeatured geometry, the algorithm determines at each iteration step which features need to be added to the geometrical model to reduce the defeaturing error. These important features are then added to the (partially) defeatured geometrical model at the next iteration, until the solution attains a prescribed accuracy. A wide range of two- and three-dimensional numerical experiments are finally reported to illustrate this work.

We discuss applications of exact structures and relative homological algebra to the study of invariants of multiparameter persistence modules. This paper is mostly expository, but does contain a pair of novel results. Over finite posets, classical arguments about the relative projective modules of an exact structure make use of Auslander-Reiten theory. One of our results establishes a new adjunction which allows us to "lift" these arguments to certain infinite posets over which Auslander-Reiten theory is not available. We give several examples of this lifting, in particular highlighting the non-existence and existence of resolutions by upsets when working with finitely presentable representations of the plane and of the closure of the positive quadrant, respectively. We then restrict our attention to finite posets. In this setting, we discuss the relationship between the global dimension of an exact structure and the representation dimension of the incidence algebra of the poset. We conclude with our second novel contribution. This is an explicit description of the irreducible morphisms between relative projective modules for several exact structures which have appeared previously in the literature.

We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators.

To enhance solution accuracy and training efficiency in neural network approximation to partial differential equations, partitioned neural networks can be used as a solution surrogate instead of a single large and deep neural network defined on the whole problem domain. In such a partitioned neural network approach, suitable interface conditions or subdomain boundary conditions are combined to obtain a convergent approximate solution. However, there has been no rigorous study on the convergence and parallel computing enhancement on the partitioned neural network approach. In this paper, iterative algorithms are proposed to address these issues. Our algorithms are based on classical additive Schwarz domain decomposition methods. Numerical results are included to show the performance of the proposed iterative algorithms.

The time-harmonic Maxwell equations at high wavenumber k in domains with an analytic boundary and impedance boundary conditions are considered. A wavenumber-explicit stability and regularity theory is developed that decomposes the solution into a part with finite Sobolev regularity that is controlled uniformly in k and an analytic part. Using this regularity, quasi-optimality of the Galerkin discretization based on Nedelec elements of order p on a mesh with mesh size h is shown under the k-explicit scale resolution condition that a) kh/p is sufficient small and b) p/\ln k is bounded from below.

北京阿比特科技有限公司