Stochastic gradient descent method and its variants constitute the core optimization algorithms that achieve good convergence rates for solving machine learning problems. These rates are obtained especially when these algorithms are fine-tuned for the application at hand. Although this tuning process can require large computational costs, recent work has shown that these costs can be reduced by line search methods that iteratively adjust the step length. We propose an alternative approach to stochastic line search by using a new algorithm based on forward step model building. This model building step incorporates second-order information that allows adjusting not only the step length but also the search direction. Noting that deep learning model parameters come in groups (layers of tensors), our method builds its model and calculates a new step for each parameter group. This novel diagonalization approach makes the selected step lengths adaptive. We provide convergence rate analysis, and experimentally show that the proposed algorithm achieves faster convergence and better generalization in well-known test problems. More precisely, SMB requires less tuning, and shows comparable performance to other adaptive methods.
Hypergeometric sequences are rational-valued sequences that satisfy first-order linear recurrence relations with polynomial coefficients; that is, $\langle u_n \rangle_{n=0}^\infty$ is hypergeometric if it satisfies a first-order linear recurrence of the form $p(n)u_{n+1} = q(n)u_{n}$ with polynomial coefficients $p,q\in\mathbb{Z}[x]$ and $u_0\in\mathbb{Q}$. In this paper, we consider the Threshold Problem for hypergeometric sequences: given a hypergeometric sequence $\langle u_n\rangle_{n=0}^\infty$ and a threshold $t\in\mathbb{Q}$, determine whether $u_n \ge t$ for each $n\in\mathbb{N}_0$. We establish decidability for the Threshold Problem under the assumption that the coefficients $p$ and $q$ are monic polynomials whose roots lie in an imaginary quadratic extension of $\mathbb{Q}$. We also establish conditional decidability results; for example, under the assumption that the coefficients $p$ and $q$ are monic polynomials whose roots lie in any number of quadratic extensions of $\mathbb{Q}$, the Threshold Problem is decidable subject to the truth of Schanuel's conjecture. Finally, we show how our approach both recovers and extends some of the recent decidability results on the Membership Problem for hypergeometric sequences with quadratic parameters.
We present LINQ, the first join protocol with linear complexity (in both running time and communication) under the secure multi-party computation model (MPC). It can also be extended to support all free-connex queries, a large class of select-join-aggregate queries, still with linear complexity. This matches the plaintext result for the query processing problem, as free-connex queries are the largest class of queries known to be solvable in linear time in plaintext. We have then built a query processing system based on LINQ, and the experimental results show that LINQ significantly outperforms the state of the art. For example, it can finish a query on three relations with an output size of 1 million tuples in around 100s in the LAN setting, while existing protocols that support the query cannot finish in an hour. Thus LINQ brings MPC query processing closer to practicality.
Despite decades of research into query optimization, optimizing queries with disjunctive predicate expressions remains a challenge. Solutions employed by existing systems (if any) are often simplistic and lead to much redundant work being performed by the execution engine. To address these problems, we propose a novel form of query execution called tagged execution. Tagged execution groups tuples into subrelations based on which predicates in the query they satisfy (or don't satisfy) and tags them with that information. These tags then provide additional context for query operators to take advantage of during runtime, allowing them to eliminate much of the redundant work performed by traditional engines and realize predicate pushdown optimizations for disjunctive predicates. However, tagged execution brings its own challenges, and the question of what tags to create is a nontrivial one. Careless creation of tags can lead to an exponential blowup in the tag space, with the overhead outweighing the benefits. To address this issue, we present a technique called tag generalization to minimize the space of tags. We implemented the tagged execution model with tag generalization in our system Basilisk, and our evaluation shows an average 2.7x speedup in runtime over the traditional execution model with up to a 19x speedup in certain situations.
In bioequivalence design, power analyses dictate how much data must be collected to detect the absence of clinically important effects. Power is computed as a tail probability in the sampling distribution of the pertinent test statistics. When these test statistics cannot be constructed from pivotal quantities, their sampling distributions are approximated via repetitive, time-intensive computer simulation. We propose a novel simulation-based method to quickly approximate the power curve for many such bioequivalence tests by efficiently exploring segments (as opposed to the entirety) of the relevant sampling distributions. Despite not estimating the entire sampling distribution, this approach prompts unbiased sample size recommendations. We illustrate this method using two-group bioequivalence tests with unequal variances and overview its broader applicability in clinical design. All methods proposed in this work can be implemented using the developed dent package in R.
Data assimilation is a core component of numerical weather prediction systems. The large quantity of data processed during assimilation requires the computation to be distributed across increasingly many compute nodes, yet existing approaches suffer from synchronisation overhead in this setting. In this paper, we exploit the formulation of data assimilation as a Bayesian inference problem and apply a message-passing algorithm to solve the spatial inference problem. Since message passing is inherently based on local computations, this approach lends itself to parallel and distributed computation. In combination with a GPU-accelerated implementation, we can scale the algorithm to very large grid sizes while retaining good accuracy and compute and memory requirements.
Many stochastic processes in the physical and biological sciences can be modelled as Brownian dynamics with multiplicative noise. However, numerical integrators for these processes can lose accuracy or even fail to converge when the diffusion term is configuration-dependent. One remedy is to construct a transform to a constant-diffusion process and sample the transformed process instead. In this work, we explain how coordinate-based and time-rescaling-based transforms can be used either individually or in combination to map a general class of variable-diffusion Brownian motion processes into constant-diffusion ones. The transforms are invertible, thus allowing recovery of the original dynamics. We motivate our methodology using examples in one dimension before then considering multivariate diffusion processes. We illustrate the benefits of the transforms through numerical simulations, demonstrating how the right combination of integrator and transform can improve computational efficiency and the order of convergence to the invariant distribution. Notably, the transforms that we derive are applicable to a class of multibody, anisotropic Stokes-Einstein diffusion that has applications in biophysical modelling.
We consider the problem of sparse variable selection on high dimension heterogeneous data sets, which has been taking on renewed interest recently due to the growth of biological and medical data sets with complex, non-i.i.d. structures and huge quantities of response variables. The heterogeneity is likely to confound the association between explanatory variables and responses, resulting in enormous false discoveries when Lasso or its variants are na\"ively applied. Therefore, developing effective confounder correction methods is a growing heat point among researchers. However, ordinarily employing recent confounder correction methods will result in undesirable performance due to the ignorance of the convoluted interdependency among response variables. To fully improve current variable selection methods, we introduce a model, the tree-guided sparse linear mixed model, that can utilize the dependency information from multiple responses to explore how specifically clusters are and select the active variables from heterogeneous data. Through extensive experiments on synthetic and real data sets, we show that our proposed model outperforms the existing methods and achieves the highest ROC area.
Normative non-functional requirements specify constraints that a system must observe in order to avoid violations of social, legal, ethical, empathetic, and cultural norms. As these requirements are typically defined by non-technical system stakeholders with different expertise and priorities (ethicists, lawyers, social scientists, etc.), ensuring their well-formedness and consistency is very challenging. Recent research has tackled this challenge using a domain-specific language to specify normative requirements as rules whose consistency can then be analysed with formal methods. In this paper, we propose a complementary approach that uses Large Language Models to extract semantic relationships between abstract representations of system capabilities. These relations, which are often assumed implicitly by non-technical stakeholders (e.g., based on common sense or domain knowledge), are then used to enrich the automated reasoning techniques for eliciting and analyzing the consistency of normative requirements. We show the effectiveness of our approach to normative requirements elicitation and operationalization through a range of real-world case studies.
Estimating the causal treatment effects by subgroups is important in observational studies when the treatment effect heterogeneity may be present. Existing propensity score methods rely on a correctly specified propensity score model. Model misspecification results in biased treatment effect estimation and covariate imbalance. We proposed a new algorithm, the propensity score analysis with guaranteed subgroup balance (G-SBPS), to achieve covariate mean balance in all subgroups. We further incorporated nonparametric kernel regression for the propensity scores and developed a kernelized G-SBPS (kG-SBPS) to improve the subgroup mean balance of covariate transformations in a rich functional class. This extension is more robust to propensity score model misspecification. Extensive numerical studies showed that G-SBPS and kG-SBPS improve both subgroup covariate balance and subgroup treatment effect estimation, compared to existing approaches. We applied G-SBPS and kG-SBPS to a dataset on right heart catheterization to estimate the subgroup average treatment effects on the hospital length of stay and a dataset on diabetes self-management training to estimate the subgroup average treatment effects for the treated on the hospitalization rate.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.