亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Self-supervised speech representations (SSSRs) have been successfully applied to a number of speech-processing tasks, e.g. as feature extractor for speech quality (SQ) prediction, which is, in turn, relevant for assessment and training speech enhancement systems for users with normal or impaired hearing. However, exact knowledge of why and how quality-related information is encoded well in such representations remains poorly understood. In this work, techniques for non-intrusive prediction of SQ ratings are extended to the prediction of intelligibility for hearing-impaired users. It is found that self-supervised representations are useful as input features to non-intrusive prediction models, achieving competitive performance to more complex systems. A detailed analysis of the performance depending on Clarity Prediction Challenge 1 listeners and enhancement systems indicates that more data might be needed to allow generalisation to unknown systems and (hearing-impaired) individuals

相關內容

The transition to 4th generation district heating creates a growing need for scalable, automated design tools that accurately capture the spatial and temporal details of heating network operation. This paper presents an automated design approach for the optimal design of district heating networks that combines scalable density-based topology optimization with a multi-period approach. In this way, temporal variations in demand, supply, and heat losses can be taken into account while optimizing the network design based on a nonlinear physics model. The transition of the automated design approach from worst-case to multi-period shows a design progression from separate branched networks to a single integrated meshed network topology connecting all producers. These integrated topologies emerge without imposing such structures a priori. They increase network connectivity, and allow for more flexible shifting of heat loads between different producers and heat consumers, resulting in more cost-effective use of heat. In a case study, this integrated design resulted in an increase in waste heat share of 42.8 % and a subsequent reduction in project cost of 17.9 %. We show how producer unavailability can be accounted for in the automated design at the cost of a 3.1 % increase in the cost of backup capacity. The resulting optimized network designs of this approach connect multiple low temperature heat sources in a single integrated network achieving high waste heat utilization and redundancy, highlighting the applicability of the approach to next-generation district heating networks.

Graph Neural Networks (GNNs) and Transformer have been increasingly adopted to learn the complex vector representations of spatio-temporal graphs, capturing intricate spatio-temporal dependencies crucial for applications such as traffic datasets. Although many existing methods utilize multi-head attention mechanisms and message-passing neural networks (MPNNs) to capture both spatial and temporal relations, these approaches encode temporal and spatial relations independently, and reflect the graph's topological characteristics in a limited manner. In this work, we introduce the Cycle to Mixer (Cy2Mixer), a novel spatio-temporal GNN based on topological non-trivial invariants of spatio-temporal graphs with gated multi-layer perceptrons (gMLP). The Cy2Mixer is composed of three blocks based on MLPs: A message-passing block for encapsulating spatial information, a cycle message-passing block for enriching topological information through cyclic subgraphs, and a temporal block for capturing temporal properties. We bolster the effectiveness of Cy2Mixer with mathematical evidence emphasizing that our cycle message-passing block is capable of offering differentiated information to the deep learning model compared to the message-passing block. Furthermore, empirical evaluations substantiate the efficacy of the Cy2Mixer, demonstrating state-of-the-art performances across various traffic benchmark datasets.

The performance of data fusion and tracking algorithms often depends on parameters that not only describe the sensor system, but can also be task-specific. While for the sensor system tuning these variables is time-consuming and mostly requires expert knowledge, intrinsic parameters of targets under track can even be completely unobservable until the system is deployed. With state-of-the-art sensor systems growing more and more complex, the number of parameters naturally increases, necessitating the automatic optimization of the model variables. In this paper, the parameters of an interacting multiple model (IMM) filter are optimized solely using measurements, thus without necessity for any ground-truth data. The resulting method is evaluated through an ablation study on simulated data, where the trained model manages to match the performance of a filter parametrized with ground-truth values.

E-commerce platforms rely on structured product descriptions, in the form of attribute/value pairs to enable features such as faceted product search and product comparison. However, vendors on these platforms often provide unstructured product descriptions consisting of a title and a textual description. To process such offers, e-commerce platforms must extract attribute/value pairs from the unstructured descriptions. State-of-the-art attribute/value extraction methods based on pre-trained language models (PLMs), such as BERT, face two drawbacks (i) the methods require significant amounts of task-specific training data and (ii) the fine-tuned models have problems to generalize to attribute values that were not part of the training data. We explore the potential of using large language models (LLMs) as a more training data-efficient and more robust alternative to existing attribute/value extraction methods. We propose different prompt templates for instructing LLMs about the target schema of the extraction, covering both zero-shot and few-shot scenarios. In the zero-shot scenario, textual and JSON-based approaches for representing information about the target attributes are compared. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, (iii) shuffled ensembling to prevent position bias, and (iv) fine-tuning the LLM. The prompt templates are evaluated in combination with hosted LLMs, such as GPT-3.5 and GPT-4, and open-source LLMs based on Llama2 which can be run locally. The best average F1-score of 86% was reached by GPT-4 using an ensemble of shuffled prompts that combine attribute names, attribute descriptions, example values, and demonstrations. Given the same amount of training data, this prompt/model combination outperforms the best PLM baseline by an average of 6% F1.

The attribution of question answering is to provide citations for supporting generated statements, and has attracted wide research attention. The current methods for automatically evaluating the attribution, which are often based on Large Language Models (LLMs), are still inadequate, particularly in recognizing subtle differences between attributions, and complex relationships between citations and statements. To compare these attribution evaluation methods and develop new ones, we introduce a set of fine-grained categories (i.e., supportive, insufficient, contradictory and irrelevant) for measuring the attribution, and develop a Complex Attributed Question Answering (CAQA) benchmark by leveraging knowledge graphs (KGs) for automatically generating attributions of different categories to question-answer pairs. Our analysis reveals that existing evaluators perform poorly under fine-grained attribution settings and exhibit weaknesses in complex citation-statement reasoning. Our CAQA benchmark, validated with human annotations, emerges as a promising tool for selecting and developing LLM attribution evaluators.

The agricultural sector is facing mounting demands to enhance energy efficiency within farm enterprises, concurrent with a steady escalation in electricity costs. This paper focuses on modelling the adoption rate of photovoltaic (PV) energy within the dairy sector in Ireland. An agent-based modelling approach is introduced to estimate the adoption rate. The model considers grid energy prices, revenue, costs, and maintenance expenses to calculate the probability of PV adoption. The ABM outputs estimate that by year 2022, 2.45% of dairy farmers have installed PV. This is a 0.45% difference to the actual PV adoption rate in year 2022. This validates the proposed ABM. The paper demonstrates the increasing interest in PV systems as evidenced by the rate of adoption, shedding light on the potential advantages of PV energy adoption in agriculture. This study possesses the potential to forecast future rates of PV energy adoption among dairy farmers. It establishes a groundwork for further research on predicting and understanding the factors influencing the adoption of renewable energy.

This paper surveys research works in the quickly advancing field of instruction tuning (IT), a crucial technique to enhance the capabilities and controllability of large language models (LLMs). Instruction tuning refers to the process of further training LLMs on a dataset consisting of \textsc{(instruction, output)} pairs in a supervised fashion, which bridges the gap between the next-word prediction objective of LLMs and the users' objective of having LLMs adhere to human instructions. In this work, we make a systematic review of the literature, including the general methodology of IT, the construction of IT datasets, the training of IT models, and applications to different modalities, domains and applications, along with an analysis on aspects that influence the outcome of IT (e.g., generation of instruction outputs, size of the instruction dataset, etc). We also review the potential pitfalls of IT along with criticism against it, along with efforts pointing out current deficiencies of existing strategies and suggest some avenues for fruitful research.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

北京阿比特科技有限公司