Ising models originated in statistical physics and are widely used in modeling spatial data and computer vision problems. However, statistical inference of this model remains challenging due to intractable nature of the normalizing constant in the likelihood. Here, we use a pseudo-likelihood instead to study the Bayesian estimation of two-parameter, inverse temperature, and magnetization, Ising model with a fully specified coupling matrix. We develop a computationally efficient variational Bayes procedure for model estimation. Under the Gaussian mean-field variational family, we derive posterior contraction rates of the variational posterior obtained under the pseudo-likelihood. We also discuss the loss incurred due to variational posterior over true posterior for the pseudo-likelihood approach. Extensive simulation studies validate the efficacy of mean-field Gaussian and bivariate Gaussian families as the possible choices of the variational family for inference of Ising model parameters.
Causal inference is to estimate the causal effect in a causal relationship when intervention is applied. Precisely, in a causal model with binary interventions, i.e., control and treatment, the causal effect is simply the difference between the factual and counterfactual. The difficulty is that the counterfactual may never been obtained which has to be estimated and so the causal effect could only be an estimate. The key challenge for estimating the counterfactual is to identify confounders which effect both outcomes and treatments. A typical approach is to formulate causal inference as a supervised learning problem and so counterfactual could be predicted. Including linear regression and deep learning models, recent machine learning methods have been adapted to causal inference. In this paper, we propose a method to estimate Causal Effect by using Variational Information Bottleneck (CEVIB). The promising point is that VIB is able to naturally distill confounding variables from the data, which enables estimating causal effect by using observational data. We have compared CEVIB to other methods by applying them to three data sets showing that our approach achieved the best performance. We also experimentally showed the robustness of our method.
One of the significant challenges in monitoring the quality of products today is the high dimensionality of quality characteristics. In this paper, we address Phase I analysis of high-dimensional processes with individual observations when the available number of samples collected over time is limited. Using a new charting statistic, we propose a robust procedure for parameter estimation in Phase I. This robust procedure is efficient in parameter estimation in the presence of outliers or contamination in the data. A consistent estimator is proposed for parameter estimation and a finite sample correction coefficient is derived and evaluated through simulation. We assess the statistical performance of the proposed method in Phase I in terms of the probability of signal criterion. This assessment is carried out in the absence and presence of outliers. We show that, in both phases, the proposed control chart scheme effectively detects various kinds of shifts in the process mean. Besides, we present two real-world examples to illustrate the applicability of our proposed method.
We present a variational method for online state estimation and parameter learning in state-space models (SSMs), a ubiquitous class of latent variable models for sequential data. As per standard batch variational techniques, we use stochastic gradients to simultaneously optimize a lower bound on the log evidence with respect to both model parameters and a variational approximation of the states' posterior distribution. However, unlike existing approaches, our method is able to operate in an entirely online manner, such that historic observations do not require revisitation after being incorporated and the cost of updates at each time step remains constant, despite the growing dimensionality of the joint posterior distribution of the states. This is achieved by utilizing backward decompositions of this joint posterior distribution and of its variational approximation, combined with Bellman-type recursions for the evidence lower bound and its gradients. We demonstrate the performance of this methodology across several examples, including high-dimensional SSMs and sequential Variational Auto-Encoders.
We consider the Bayesian analysis of models in which the unknown distribution of the outcomes is specified up to a set of conditional moment restrictions. The nonparametric exponentially tilted empirical likelihood function is constructed to satisfy a sequence of unconditional moments based on an increasing (in sample size) vector of approximating functions (such as tensor splines based on the splines of each conditioning variable). For any given sample size, results are robust to the number of expanded moments. We derive Bernstein-von Mises theorems for the behavior of the posterior distribution under both correct and incorrect specification of the conditional moments, subject to growth rate conditions (slower under misspecification) on the number of approximating functions. A large-sample theory for comparing different conditional moment models is also developed. The central result is that the marginal likelihood criterion selects the model that is less misspecified. We also introduce sparsity-based model search for high-dimensional conditioning variables, and provide efficient MCMC computations for high-dimensional parameters. Along with clarifying examples, the framework is illustrated with real-data applications to risk-factor determination in finance, and causal inference under conditional ignorability.
Mixture models are useful in a wide array of applications to identify subpopulations in noisy overlapping distributions. For example, in multiplexed immunofluorescence (mIF), cell image intensities represent expression levels and the cell populations are a noisy mixture of expressed and unexpressed cells. Among mixture models, the gamma mixture model has the strength of being flexible in fitting skewed strictly positive data that occur in many biological measurements. However, the current estimation method uses numerical optimization within the expectation maximization algorithm and is computationally expensive. This makes it infeasible to be applied across many large data sets, as is necessary in mIF data. Powered by a recently developed closed-form estimator for the gamma distribution, we propose a closed-form gamma mixture model that is not only more computationally efficient, but can also incorporate constraints from known biological information to the fitted distribution. We derive the closed-form estimators for the gamma mixture model and use simulations to demonstrate that our model produces comparable results with the current model with significantly less time, and is excellent in constrained model fitting.
We consider a dynamical system with two sources of uncertainties: (1) parameterized input with a known probability distribution and (2) stochastic input-to-response (ItR) function with heteroscedastic randomness. Our purpose is to efficiently quantify the extreme response probability when the ItR function is expensive to evaluate. The problem setup arises often in physics and engineering problems, with randomness in ItR coming from either intrinsic uncertainties (say, as a solution to a stochastic equation) or additional (critical) uncertainties that are not incorporated in the input parameter space. To reduce the required sampling numbers, we develop a sequential Bayesian experimental design method leveraging the variational heteroscedastic Gaussian process regression (VHGPR) to account for the stochastic ItR, along with a new criterion to select the next-best samples sequentially. The validity of our new method is first tested in two synthetic problems with the stochastic ItR functions defined artificially. Finally, we demonstrate the application of our method to an engineering problem of estimating the extreme ship motion probability in ensemble of wave groups, where the uncertainty in ItR naturally originates from the uncertain initial condition of ship motion in each wave group.
We study an approach to learning pruning masks by optimizing the expected loss of stochastic pruning masks, i.e., masks which zero out each weight independently with some weight-specific probability. We analyze the training dynamics of the induced stochastic predictor in the setting of linear regression, and observe a data-adaptive L1 regularization term, in contrast to the dataadaptive L2 regularization term known to underlie dropout in linear regression. We also observe a preference to prune weights that are less well-aligned with the data labels. We evaluate probabilistic fine-tuning for optimizing stochastic pruning masks for neural networks, starting from masks produced by several baselines. In each case, we see improvements in test error over baselines, even after we threshold fine-tuned stochastic pruning masks. Finally, since a stochastic pruning mask induces a stochastic neural network, we consider training the weights and/or pruning probabilities simultaneously to minimize a PAC-Bayes bound on generalization error. Using data-dependent priors, we obtain a selfbounded learning algorithm with strong performance and numerically tight bounds. In the linear model, we show that a PAC-Bayes generalization error bound is controlled by the magnitude of the change in feature alignment between the 'prior' and 'posterior' data.
Recent deep learning approaches focus on improving quantitative scores of dedicated benchmarks, and therefore only reduce the observation-related (aleatoric) uncertainty. However, the model-immanent (epistemic) uncertainty is less frequently systematically analyzed. In this work, we introduce a Bayesian variational framework to quantify the epistemic uncertainty. To this end, we solve the linear inverse problem of undersampled MRI reconstruction in a variational setting. The associated energy functional is composed of a data fidelity term and the total deep variation (TDV) as a learned parametric regularizer. To estimate the epistemic uncertainty we draw the parameters of the TDV regularizer from a multivariate Gaussian distribution, whose mean and covariance matrix are learned in a stochastic optimal control problem. In several numerical experiments, we demonstrate that our approach yields competitive results for undersampled MRI reconstruction. Moreover, we can accurately quantify the pixelwise epistemic uncertainty, which can serve radiologists as an additional resource to visualize reconstruction reliability.
The problem of covariance estimation for replicated surface-valued processes is examined from the functional data analysis perspective. Considerations of statistical and computational efficiency often compel the use of separability of the covariance, even though the assumption may fail in practice. We consider a setting where the covariance structure may fail to be separable locally -- either due to noise contamination or due to the presence of a~non-separable short-range dependent signal component. That is, the covariance is an additive perturbation of a separable component by a~non-separable but banded component. We introduce non-parametric estimators hinging on the novel concept of shifted partial tracing, enabling computationally efficient estimation of the model under dense observation. Due to the denoising properties of shifted partial tracing, our methods are shown to yield consistent estimators even under noisy discrete observation, without the need for smoothing. Further to deriving the convergence rates and limit theorems, we also show that the implementation of our estimators, including prediction, comes at no computational overhead relative to a separable model. Finally, we demonstrate empirical performance and computational feasibility of our methods in an extensive simulation study and on a real data set.
Under mild conditions, it is shown the strong consistency of the Bayes estimator of the density. Moreover, the Bayes risk (for some common loss functions) of the Bayes estimator of the density (i.e. the posterior predictive density) reaches zero when the sample size goes to $\infty$. In passing, a similar result is obtained for the estimation of the sampling distribution.