Agent-based simulations have been used in modeling transportation systems for traffic management and passenger flows. In this work, we hope to shed light on the complex factors that influence transportation mode decisions within developing countries, using Colombia as a case study. We model an ecosystem of human agents that decide at each time step on the mode of transportation they would take to work. Their decision is based on a combination of their personal satisfaction with the journey they had just taken, which is evaluated across a personal vector of needs, the information they crowdsource from their prevailing social network, and their personal uncertainty about the experience of trying a new transport solution. We simulate different network structures to analyze the social influence for different decision-makers. We find that in low/medium connected groups inquisitive people actively change modes cyclically over the years while imitators cluster rapidly and change less frequently.
Tensor parameters that are amortized or regularized over large tensor powers, often called "asymptotic" tensor parameters, play a central role in several areas including algebraic complexity theory (constructing fast matrix multiplication algorithms), quantum information (entanglement cost and distillable entanglement), and additive combinatorics (bounds on cap sets, sunflower-free sets, etc.). Examples are the asymptotic tensor rank, asymptotic slice rank and asymptotic subrank. Recent works (Costa-Dalai, Blatter-Draisma-Rupniewski, Christandl-Gesmundo-Zuiddam) have investigated notions of discreteness (no accumulation points) or "gaps" in the values of such tensor parameters. We prove a general discreteness theorem for asymptotic tensor parameters of order-three tensors and use this to prove that (1) over any finite field (and in fact any finite set of coefficients in any field), the asymptotic subrank and the asymptotic slice rank have no accumulation points, and (2) over the complex numbers, the asymptotic slice rank has no accumulation points. Central to our approach are two new general lower bounds on the asymptotic subrank of tensors, which measures how much a tensor can be diagonalized. The first lower bound says that the asymptotic subrank of any concise three-tensor is at least the cube-root of the smallest dimension. The second lower bound says that any concise three-tensor that is "narrow enough" (has one dimension much smaller than the other two) has maximal asymptotic subrank. Our proofs rely on new lower bounds on the maximum rank in matrix subspaces that are obtained by slicing a three-tensor in the three different directions. We prove that for any concise tensor, the product of any two such maximum ranks must be large, and as a consequence there are always two distinct directions with large max-rank.
Discovering causal relationships from observational data is a fundamental yet challenging task. In some applications, it may suffice to learn the causal features of a given response variable, instead of learning the entire underlying causal structure. Invariant causal prediction (ICP, Peters et al., 2016) is a method for causal feature selection which requires data from heterogeneous settings. ICP assumes that the mechanism for generating the response from its direct causes is the same in all settings and exploits this invariance to output a subset of the causal features. The framework of ICP has been extended to general additive noise models and to nonparametric settings using conditional independence testing. However, nonparametric conditional independence testing often suffers from low power (or poor type I error control) and the aforementioned parametric models are not suitable for applications in which the response is not measured on a continuous scale, but rather reflects categories or counts. To bridge this gap, we develop ICP in the context of transformation models (TRAMs), allowing for continuous, categorical, count-type, and uninformatively censored responses (we show that, in general, these model classes do not allow for identifiability when there is no exogenous heterogeneity). We propose TRAM-GCM, a test for invariance of a subset of covariates, based on the expected conditional covariance between environments and score residuals which satisfies uniform asymptotic level guarantees. For the special case of linear shift TRAMs, we propose an additional invariance test, TRAM-Wald, based on the Wald statistic. We implement both proposed methods in the open-source R package "tramicp" and show in simulations that under the correct model specification, our approach empirically yields higher power than nonparametric ICP based on conditional independence testing.
Dual-path is a popular architecture for speech separation models (e.g. Sepformer) which splits long sequences into overlapping chunks for its intra- and inter-blocks that separately model intra-chunk local features and inter-chunk global relationships. However, it has been found that inter-blocks, which comprise half a dual-path model's parameters, contribute minimally to performance. Thus, we propose the Single-Path Global Modulation (SPGM) block to replace inter-blocks. SPGM is named after its structure consisting of a parameter-free global pooling module followed by a modulation module comprising only 2% of the model's total parameters. The SPGM block allows all transformer layers in the model to be dedicated to local feature modelling, making the overall model single-path. SPGM achieves 22.1 dB SI-SDRi on WSJ0-2Mix and 20.4 dB SI-SDRi on Libri2Mix, exceeding the performance of Sepformer by 0.5 dB and 0.3 dB respectively and matches the performance of recent SOTA models with up to 8 times fewer parameters.
The autologistic actor attribute model, or ALAAM, is the social influence counterpart of the better-known exponential-family random graph model (ERGM) for social selection. Extensive experience with ERGMs has shown that the problem of near-degeneracy which often occurs with simple models can be overcome by using "geometrically weighted" or "alternating" statistics. In the much more limited empirical applications of ALAAMs to date, the problem of near-degeneracy, although theoretically expected, appears to have been less of an issue. In this work I present a comprehensive survey of ALAAM applications, showing that this model has to date only been used with relatively small networks, in which near-degeneracy does not appear to be a problem. I show near-degeneracy does occur in simple ALAAM models of larger empirical networks, define some geometrically weighted ALAAM statistics analogous to those for ERGM, and demonstrate that models with these statistics do not suffer from near-degeneracy and hence can be estimated where they could not be with the simple statistics.
Sequential models, such as Recurrent Neural Networks and Neural Ordinary Differential Equations, have long suffered from slow training due to their inherent sequential nature. For many years this bottleneck has persisted, as many thought sequential models could not be parallelized. We challenge this long-held belief with our parallel algorithm that accelerates GPU evaluation of sequential models by up to 3 orders of magnitude faster without compromising output accuracy. The algorithm does not need any special structure in the sequential models' architecture, making it applicable to a wide range of architectures. Using our method, training sequential models can be more than 10 times faster than the common sequential method without any meaningful difference in the training results. Leveraging this accelerated training, we discovered the efficacy of the Gated Recurrent Unit in a long time series classification problem with 17k time samples. By overcoming the training bottleneck, our work serves as the first step to unlock the potential of non-linear sequential models for long sequence problems.
Regularization by the Shannon entropy enables us to efficiently and approximately solve optimal transport problems on a finite set. This paper is concerned with regularized optimal transport problems via Bregman divergence. We introduce the required properties for Bregman divergences, provide a non-asymptotic error estimate for the regularized problem, and show that the error estimate becomes faster than exponentially.
Neuromorphic computing is one of the few current approaches that have the potential to significantly reduce power consumption in Machine Learning and Artificial Intelligence. Imam & Cleland presented an odour-learning algorithm that runs on a neuromorphic architecture and is inspired by circuits described in the mammalian olfactory bulb. They assess the algorithm's performance in "rapid online learning and identification" of gaseous odorants and odorless gases (short "gases") using a set of gas sensor recordings of different odour presentations and corrupting them by impulse noise. We replicated parts of the study and discovered limitations that affect some of the conclusions drawn. First, the dataset used suffers from sensor drift and a non-randomised measurement protocol, rendering it of limited use for odour identification benchmarks. Second, we found that the model is restricted in its ability to generalise over repeated presentations of the same gas. We demonstrate that the task the study refers to can be solved with a simple hash table approach, matching or exceeding the reported results in accuracy and runtime. Therefore, a validation of the model that goes beyond restoring a learned data sample remains to be shown, in particular its suitability to odour identification tasks.
Inference principles are postulated within statistics, they are not usually derived from any underlying physical constraints on real world observers. An exception to this rule is that in the context of partially observable information engines decision making can be based solely on physical arguments. An inference principle can be derived from minimization of the lower bound on average dissipation [Phys. Rev. Lett., 124(5), 050601], which is achievable with a quasi-static process. Thermodynamically rational decision strategies can be computed algorithmically with the resulting approach. Here, we use this to study an example of binary decision making under uncertainty that is very simple, yet just interesting enough to be non-trivial: observations are either entirely uninformative, or they carry complete certainty about the variable that needs to be known for successful energy harvesting. Solutions found algorithmically can be expressed in terms of parameterized soft partitions of the observable space. This allows for their interpretation, as well as for the analytical calculation of all quantities that characterize the decision problem and the thermodynamically rational strategies.
We consider the problem of attaining either the maximal increase or reduction of the robustness of a complex network by means of a bounded modification of a subset of the edge weights. We propose two novel strategies combining Krylov subspace approximations with a greedy scheme and an interior point method employing either the Hessian or its approximation computed via the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS). The paper discusses the computational and modeling aspects of our methodology and illustrates the various optimization problems on networks that can be addressed within the proposed framework. Finally, in the numerical experiments we compare the performances of our algorithms with state-of-the-art techniques on synthetic and real-world networks.
We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.