This paper conducts fairness testing on automated pedestrian detection, a crucial but under-explored issue in autonomous driving systems. We evaluate eight widely-studied pedestrian detectors across demographic groups on large-scale real-world datasets. To enable thorough fairness testing, we provide extensive annotations for the datasets, resulting in 8,311 images with 16,070 gender labels, 20,115 age labels, and 3,513 skin tone labels. Our findings reveal significant fairness issues related to age and skin tone. The detection accuracy for adults is 19.67% higher compared to children, and there is a 7.52% accuracy disparity between light-skin and dark-skin individuals. Gender, however, shows only a 1.1% difference in detection accuracy. Additionally, we investigate common scenarios explored in the literature on autonomous driving testing, and find that the bias towards dark-skin pedestrians increases significantly under scenarios of low contrast and low brightness. We publicly release the code, data, and results to support future research on fairness in autonomous driving.
Accurate trajectory prediction is crucial for safe and efficient autonomous driving, but handling partial observations presents significant challenges. To address this, we propose a novel trajectory prediction framework called Partial Observations Prediction (POP) for congested urban road scenarios. The framework consists of two stages: self-supervised learning (SSL) and feature distillation. In SSL, a reconstruction branch reconstructs the hidden history of partial observations using a mask procedure and reconstruction head. The feature distillation stage transfers knowledge from a fully observed teacher model to a partially observed student model, improving prediction accuracy. POP achieves comparable results to top-performing methods in open-loop experiments and outperforms the baseline method in closed-loop simulations, including safety metrics. Qualitative results illustrate the superiority of POP in providing reasonable and safe trajectory predictions.
As vehicle automation advances, motion planning algorithms face escalating challenges in achieving safe and efficient navigation. Existing Advanced Driver Assistance Systems (ADAS) primarily focus on basic tasks, leaving unexpected scenarios for human intervention, which can be error-prone. Motion planning approaches for higher levels of automation in the state-of-the-art are primarily oriented toward the use of risk- or anti-collision constraints, using over-approximates of the shapes and sizes of other road users to prevent collisions. These methods however suffer from conservative behavior and the risk of infeasibility in high-risk initial conditions. In contrast, our work introduces a novel multi-objective trajectory generation approach. We propose an innovative method for constructing risk fields that accommodates diverse entity shapes and sizes, which allows us to also account for the presence of potentially occluded objects. This methodology is integrated into an occlusion-aware trajectory generator, enabling dynamic and safe maneuvering through intricate environments while anticipating (potentially hidden) road users and traveling along the infrastructure toward a specific goal. Through theoretical underpinnings and simulations, we validate the effectiveness of our approach. This paper bridges crucial gaps in motion planning for automated vehicles, offering a pathway toward safer and more adaptable autonomous navigation in complex urban contexts.
This paper studies the design of energy-efficient artificial noise (AN) schemes in the context of physical layer security in visible light communications (VLC). Two different transmission schemes termed $\textit{selective AN-aided single-input single-output (SISO)}$ and $\textit{AN-aided multiple-input single-output (MISO)}$ are examined and compared in terms of secrecy energy efficiency (SEE). In the former, the closest LED luminaire to the legitimate user (Bob) is the information-bearing signal's transmitter. At the same time, the rest of the luminaries act as jammers transmitting AN to degrade the channels of eavesdroppers (Eves). In the latter, the information-bearing signal and AN are combined and transmitted by all luminaries. When Eves' CSI is unknown, an indirect design to improve the SEE is formulated by maximizing Bob's channel's energy efficiency. A low-complexity design based on the zero-forcing criterion is also proposed. In the case of known Eves' CSI, we study the design that maximizes the minimum SEE among those corresponding to all eavesdroppers. At their respective optimal SEEs, simulation results reveal that when Eves' CSI is unknown, the selective AN-aided SISO transmission can archive twice better SEE as the AN-aided MISO does. In contrast, when Eves' CSI is known, the AN-aided MISO outperforms by 30%.
This paper presents a novel approach to fall prediction for bipedal robots, specifically targeting the detection of potential falls while standing caused by abrupt, incipient, and intermittent faults. Leveraging a 1D convolutional neural network (CNN), our method aims to maximize lead time for fall prediction while minimizing false positive rates. The proposed algorithm uniquely integrates the detection of various fault types and estimates the lead time for potential falls. Our contributions include the development of an algorithm capable of detecting abrupt, incipient, and intermittent faults in full-sized robots, its implementation using both simulation and hardware data for a humanoid robot, and a method for estimating lead time. Evaluation metrics, including false positive rate, lead time, and response time, demonstrate the efficacy of our approach. Particularly, our model achieves impressive lead times and response times across different fault scenarios with a false positive rate of 0. The findings of this study hold significant implications for enhancing the safety and reliability of bipedal robotic systems.
Training large language models to follow instructions makes them perform better on a wide range of tasks, generally becoming more helpful. However, a perfectly helpful model will follow even the most malicious instructions and readily generate harmful content. In this paper, we raise concerns over the safety of models that only emphasize helpfulness, not safety, in their instruction-tuning. We show that several popular instruction-tuned models are highly unsafe. Moreover, we show that adding just 3% safety examples (a few hundred demonstrations) in the training set when fine-tuning a model like LLaMA can substantially improve their safety. Our safety-tuning does not make models significantly less capable or helpful as measured by standard benchmarks. However, we do find a behavior of exaggerated safety, where too much safety-tuning makes models refuse to respond to reasonable prompts that superficially resemble unsafe ones. Our study sheds light on trade-offs in training LLMs to follow instructions and exhibit safe behavior.
This paper tackles the challenging task of evaluating socially situated conversational robots and presents a novel objective evaluation approach that relies on multimodal user behaviors. In this study, our main focus is on assessing the human-likeness of the robot as the primary evaluation metric. While previous research often relied on subjective evaluations from users, our approach aims to evaluate the robot's human-likeness based on observable user behaviors indirectly, thus enhancing objectivity and reproducibility. To begin, we created an annotated dataset of human-likeness scores, utilizing user behaviors found in an attentive listening dialogue corpus. We then conducted an analysis to determine the correlation between multimodal user behaviors and human-likeness scores, demonstrating the feasibility of our proposed behavior-based evaluation method.
This paper presents a comprehensive study focusing on the influence of DEM type and spatial resolution on the accuracy of flood inundation prediction. The research employs a state-of-the-art deep learning method using a 1D convolutional neural network (CNN). The CNN-based method employs training input data in the form of synthetic hydrographs, along with target data represented by water depth obtained utilizing a 2D hydrodynamic model, LISFLOOD-FP. The performance of the trained CNN models is then evaluated and compared with the observed flood event. This study examines the use of digital surface models (DSMs) and digital terrain models (DTMs) derived from a LIDAR-based 1m DTM, with resolutions ranging from 15 to 30 meters. The proposed methodology is implemented and evaluated in a well-established benchmark location in Carlisle, UK. The paper also discusses the applicability of the methodology to address the challenges encountered in a data-scarce flood-prone region, exemplified by Pakistan. The study found that DTM performs better than DSM at lower resolutions. Using a 30m DTM improved flood depth prediction accuracy by about 21% during the peak stage. Increasing the resolution to 15m increased RMSE and overlap index by at least 50% and 20% across all flood phases. The study demonstrates that while coarser resolution may impact the accuracy of the CNN model, it remains a viable option for rapid flood prediction compared to hydrodynamic modeling approaches.
Statisticians are not only one of the earliest professional adopters of data visualization, but also some of its most prolific users. Understanding how these professionals utilize visual representations in their analytic process may shed light on best practices for visual sensemaking. We present results from an interview study involving 18 professional statisticians (19.7 years average in the profession) on three aspects: (1) their use of visualization in their daily analytic work; (2) their mental models of inferential statistical processes; and (3) their design recommendations for how to best represent statistical inferences. Interview sessions consisted of discussing inferential statistics, eliciting participant sketches of suitable visual designs, and finally, a design intervention with our proposed visual designs. We analyzed interview transcripts using thematic analysis and open coding, deriving thematic codes on statistical mindset, analytic process, and analytic toolkit. The key findings for each aspect are as follows: (1) statisticians make extensive use of visualization during all phases of their work (and not just when reporting results); (2) their mental models of inferential methods tend to be mostly visually based; and (3) many statisticians abhor dichotomous thinking. The latter suggests that a multi-faceted visual display of inferential statistics that includes a visual indicator of analytically important effect sizes may help to balance the attributed epistemic power of traditional statistical testing with an awareness of the uncertainty of sensemaking.
Modern recommender systems lie at the heart of complex ecosystems that couple the behavior of users, content providers, advertisers, and other actors. Despite this, the focus of the majority of recommender research -- and most practical recommenders of any import -- is on the local, myopic optimization of the recommendations made to individual users. This comes at a significant cost to the long-term utility that recommenders could generate for its users. We argue that explicitly modeling the incentives and behaviors of all actors in the system -- and the interactions among them induced by the recommender's policy -- is strictly necessary if one is to maximize the value the system brings to these actors and improve overall ecosystem "health". Doing so requires: optimization over long horizons using techniques such as reinforcement learning; making inevitable tradeoffs in the utility that can be generated for different actors using the methods of social choice; reducing information asymmetry, while accounting for incentives and strategic behavior, using the tools of mechanism design; better modeling of both user and item-provider behaviors by incorporating notions from behavioral economics and psychology; and exploiting recent advances in generative and foundation models to make these mechanisms interpretable and actionable. We propose a conceptual framework that encompasses these elements, and articulate a number of research challenges that emerge at the intersection of these different disciplines.
Maintaining factual consistency is a critical issue in abstractive text summarisation, however, it cannot be assessed by traditional automatic metrics used for evaluating text summarisation, such as ROUGE scoring. Recent efforts have been devoted to developing improved metrics for measuring factual consistency using pre-trained language models, but these metrics have restrictive token limits, and are therefore not suitable for evaluating long document text summarisation. Moreover, there is limited research evaluating whether existing automatic evaluation metrics are fit for purpose when applied to long document data sets. In this work, we evaluate the efficacy of automatic metrics at assessing factual consistency in long document text summarisation and propose a new evaluation framework LongDocFACTScore. This framework allows metrics to be extended to any length document. This framework outperforms existing state-of-the-art metrics in its ability to correlate with human measures of factuality when used to evaluate long document summarisation data sets. Furthermore, we show LongDocFACTScore has performance comparable to state-of-the-art metrics when evaluated against human measures of factual consistency on short document data sets. We make our code and annotated data publicly available: //github.com/jbshp/LongDocFACTScore.