Let $X=X_1\sqcup X_2\sqcup\ldots\sqcup X_k$ be a partitioned set of variables such that the variables in each part $X_i$ are noncommuting but for any $i\neq j$, the variables $x\in X_i$ commute with the variables $x'\in X_j$. Given as input a square matrix $T$ whose entries are linear forms over $\mathbb{Q}\langle{X}\rangle$, we consider the problem of checking if $T$ is invertible or not over the universal skew field of fractions of the partially commutative polynomial ring $\mathbb{Q}\langle{X}\rangle$ [Klep-Vinnikov-Volcic (2020)]. In this paper, we design a deterministic polynomial-time algorithm for this problem for constant $k$. The special case $k=1$ is the noncommutative Edmonds' problem (NSINGULAR) which has a deterministic polynomial-time algorithm by recent results [Garg-Gurvits-Oliveira-Wigderson (2016), Ivanyos-Qiao-Subrahmanyam (2018), Hamada-Hirai (2021)]. En-route, we obtain the first deterministic polynomial-time algorithm for the equivalence testing problem of $k$-tape \emph{weighted} automata (for constant $k$) resolving a long-standing open problem [Harju and Karhum"{a}ki(1991), Worrell (2013)]. Algebraically, the equivalence problem reduces to testing whether a partially commutative rational series over the partitioned set $X$ is zero or not [Worrell (2013)]. Decidability of this problem was established by Harju and Karhum\"{a}ki (1991). Prior to this work, a \emph{randomized} polynomial-time algorithm for this problem was given by Worrell (2013) and, subsequently, a deterministic quasipolynomial-time algorithm was also developed [Arvind et al. (2021)].
We give a quantum approximation scheme (i.e., $(1 + \varepsilon)$-approximation for every $\varepsilon > 0$) for the classical $k$-means clustering problem in the QRAM model with a running time that has only polylogarithmic dependence on the number of data points. More specifically, given a dataset $V$ with $N$ points in $\mathbb{R}^d$ stored in QRAM data structure, our quantum algorithm runs in time $\tilde{O} \left( 2^{\tilde{O}(\frac{k}{\varepsilon})} \eta^2 d\right)$ and with high probability outputs a set $C$ of $k$ centers such that $cost(V, C) \leq (1+\varepsilon) \cdot cost(V, C_{OPT})$. Here $C_{OPT}$ denotes the optimal $k$-centers, $cost(.)$ denotes the standard $k$-means cost function (i.e., the sum of the squared distance of points to the closest center), and $\eta$ is the aspect ratio (i.e., the ratio of maximum distance to minimum distance). This is the first quantum algorithm with a polylogarithmic running time that gives a provable approximation guarantee of $(1+\varepsilon)$ for the $k$-means problem. Also, unlike previous works on unsupervised learning, our quantum algorithm does not require quantum linear algebra subroutines and has a running time independent of parameters (e.g., condition number) that appear in such procedures.
A set of high dimensional points $X=\{x_1, x_2,\ldots, x_n\} \subset R^d$ in isotropic position is said to be $\delta$-anti concentrated if for every direction $v$, the fraction of points in $X$ satisfying $|\langle x_i,v \rangle |\leq \delta$ is at most $O(\delta)$. Motivated by applications to list-decodable learning and clustering, recent works have considered the problem of constructing efficient certificates of anti-concentration in the average case, when the set of points $X$ corresponds to samples from a Gaussian distribution. Their certificates played a crucial role in several subsequent works in algorithmic robust statistics on list-decodable learning and settling the robust learnability of arbitrary Gaussian mixtures, yet remain limited to rotationally invariant distributions. This work presents a new (and arguably the most natural) formulation for anti-concentration. Using this formulation, we give quasi-polynomial time verifiable sum-of-squares certificates of anti-concentration that hold for a wide class of non-Gaussian distributions including anti-concentrated bounded product distributions and uniform distributions over $L_p$ balls (and their affine transformations). Consequently, our method upgrades and extends results in algorithmic robust statistics e.g., list-decodable learning and clustering, to such distributions. Our approach constructs a canonical integer program for anti-concentration and analysis a sum-of-squares relaxation of it, independent of the intended application. We rely on duality and analyze a pseudo-expectation on large subsets of the input points that take a small value in some direction. Our analysis uses the method of polynomial reweightings to reduce the problem to analyzing only analytically dense or sparse directions.
Finding a good approximation of the top eigenvector of a given $d\times d$ matrix $A$ is a basic and important computational problem, with many applications. We give two different quantum algorithms that, given query access to the entries of a Hermitian matrix $A$ and assuming a constant eigenvalue gap, output a classical description of a good approximation of the top eigenvector: one algorithm with time complexity $\mathcal{\tilde{O}}(d^{1.75})$ and one with time complexity $d^{1.5+o(1)}$ (the first algorithm has a slightly better dependence on the $\ell_2$-error of the approximating vector than the second, and uses different techniques of independent interest). Both of our quantum algorithms provide a polynomial speed-up over the best-possible classical algorithm, which needs $\Omega(d^2)$ queries to entries of $A$, and hence $\Omega(d^2)$ time. We extend this to a quantum algorithm that outputs a classical description of the subspace spanned by the top-$q$ eigenvectors in time $qd^{1.5+o(1)}$. We also prove a nearly-optimal lower bound of $\tilde{\Omega}(d^{1.5})$ on the quantum query complexity of approximating the top eigenvector. Our quantum algorithms run a version of the classical power method that is robust to certain benign kinds of errors, where we implement each matrix-vector multiplication with small and well-behaved error on a quantum computer, in different ways for the two algorithms. Our first algorithm estimates the matrix-vector product one entry at a time, using a new ``Gaussian phase estimation'' procedure. Our second algorithm uses block-encoding techniques to compute the matrix-vector product as a quantum state, from which we obtain a classical description by a new time-efficient unbiased pure-state tomography procedure.
Given a graph $M,$ path eigenvalues are eigenvalues of its path matrix. The path energy of a simple graph $M$ is equal to the sum of the absolute values of the path eigenvalues of the graph $M$ (Shikare et. al, 2018). We have discovered new upper constraints on path energy in this study, expressed in terms of a graph's maximum degree. Additionally, a relationship between a graph's energy and path energy is given.
We consider the performance of a least-squares regression model, as judged by out-of-sample $R^2$. Shapley values give a fair attribution of the performance of a model to its input features, taking into account interdependencies between features. Evaluating the Shapley values exactly requires solving a number of regression problems that is exponential in the number of features, so a Monte Carlo-type approximation is typically used. We focus on the special case of least-squares regression models, where several tricks can be used to compute and evaluate regression models efficiently. These tricks give a substantial speed up, allowing many more Monte Carlo samples to be evaluated, achieving better accuracy. We refer to our method as least-squares Shapley performance attribution (LS-SPA), and describe our open-source implementation.
General factors are a generalization of matchings. Given a graph $G$ with a set $\pi(v)$ of feasible degrees, called a degree constraint, for each vertex $v$ of $G$, the general factor problem is to find a (spanning) subgraph $F$ of $G$ such that $\text{deg}_F(x) \in \pi(v)$ for every $v$ of $G$. When all degree constraints are symmetric $\Delta$-matroids, the problem is solvable in polynomial time. The weighted general factor problem is to find a general factor of the maximum total weight in an edge-weighted graph. In this paper, we present the first strongly polynomial-time algorithm for a type of weighted general factor problems with real-valued edge weights that is provably not reducible to the weighted matching problem by gadget constructions.
We provide a self contained proof of a result of Dudley [Dud64]} which shows that a bounded convex-body in $\Re^d$ can be $\varepsilon$-approximated, by the intersection of $O_d\bigl(\varepsilon^{-(d-1)/2} \bigr)$ halfspaces, where $O_d$ hides constants that depends on $d$.
We provide a framework to analyze the convergence of discretized kinetic Langevin dynamics for $M$-$\nabla$Lipschitz, $m$-convex potentials. Our approach gives convergence rates of $\mathcal{O}(m/M)$, with explicit stepsize restrictions, which are of the same order as the stability threshold for Gaussian targets and are valid for a large interval of the friction parameter. We apply this methodology to various integration schemes which are popular in the molecular dynamics and machine learning communities. Further, we introduce the property ``$\gamma$-limit convergent" (GLC) to characterize underdamped Langevin schemes that converge to overdamped dynamics in the high-friction limit and which have stepsize restrictions that are independent of the friction parameter; we show that this property is not generic by exhibiting methods from both the class and its complement. Finally, we provide asymptotic bias estimates for the BAOAB scheme, which remain accurate in the high-friction limit by comparison to a modified stochastic dynamics which preserves the invariant measure.
Vizing's celebrated theorem states that every simple graph with maximum degree $\Delta$ admits a $(\Delta+1)$ edge coloring which can be found in $O(m \cdot n)$ time on $n$-vertex $m$-edge graphs. This is just one color more than the trivial lower bound of $\Delta$ colors needed in any proper edge coloring. After a series of simplifications and variations, this running time was eventually improved by Gabow, Nishizeki, Kariv, Leven, and Terada in 1985 to $O(m\sqrt{n\log{n}})$ time. This has effectively remained the state-of-the-art modulo an $O(\sqrt{\log{n}})$-factor improvement by Sinnamon in 2019. As our main result, we present a novel randomized algorithm that computes a $\Delta+O(\log{n})$ coloring of any given simple graph in $O(m\log{\Delta})$ expected time; in other words, a near-linear time randomized algorithm for a ``near''-Vizing's coloring. As a corollary of this algorithm, we also obtain the following results: * A randomized algorithm for $(\Delta+1)$ edge coloring in $O(n^2\log{n})$ expected time. This is near-linear in the input size for dense graphs and presents the first polynomial time improvement over the longstanding bounds of Gabow et.al. for Vizing's theorem in almost four decades. * A randomized algorithm for $(1+\varepsilon) \Delta$ edge coloring in $O(m\log{(1/\varepsilon)})$ expected time for any $\varepsilon = \omega(\log{n}/\Delta)$. The dependence on $\varepsilon$ exponentially improves upon a series of recent results that obtain algorithms with runtime of $\Omega(m/\varepsilon)$ for this problem.
Let $\alpha(G)$ denote the cardinality of a maximum independent set, while $\mu(G)$ be the size of a maximum matching in $G=\left( V,E\right) $. It is known that if $\alpha(G)+\mu(G)=\left\vert V\right\vert $, then $G$ is a K\"{o}nig-Egerv\'{a}ry graph. The critical difference $d(G)$ is $\max\{d(I):I\in\mathrm{Ind}(G)\}$, where $\mathrm{Ind}(G)$\ denotes the family of all independent sets of $G$. If $A\in\mathrm{Ind}(G)$ with $d\left( X\right) =d(G)$, then $A$ is a critical independent set. For a graph $G$, let $\mathrm{diadem}(G)=\bigcup\{S:S$ is a critical independent set in $G\}$, and $\varrho_{v}\left( G\right) $ denote the number of vertices $v\in V\left( G\right) $, such that $G-v$ is a K\"{o}nig-Egerv\'{a}ry graph. A graph is called almost bipartite if it has a unique odd cycle. In this paper, we show that if $G$ is an almost bipartite non-K\"{o}nig-Egerv\'{a}ry graph with the unique odd cycle $C$, then the following assertions are true: 1. every maximum matching of $G$ contains $\left\lfloor {V(C)}/{2}\right\rfloor $ edges belonging to $C$; 2. $V(C)\cup N_{G}\left[ \mathrm{diadem}\left( G\right) \right] =V$ and $V(C)\cap N_{G}\left[ \mathrm{diadem}\left( G\right) \right] =\emptyset$; 3. $\varrho_{v}\left( G\right) =\left\vert \mathrm{corona}\left( G\right) \right\vert -\left\vert \mathrm{diadem}\left( G\right) \right\vert $, where $\mathrm{corona}\left( G\right) $ is the union of all maximum independent sets of $G$; 4. $\varrho_{v}\left( G\right) =\left\vert V\right\vert $ if and only if $G=C_{2k+1}$ for some integer $k\geq1$.