亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We aim at estimating the invariant density associated to a stochastic differential equation with jumps in low dimension, which is for $d=1$ and $d=2$. We consider a class of jump diffusion processes whose invariant density belongs to some H\"older space. Firstly, in dimension one, we show that the kernel density estimator achieves the convergence rate $\frac{1}{T}$, which is the optimal rate in the absence of jumps. This improves the convergence rate obtained in [Amorino, Gloter (2021)], which depends on the Blumenthal-Getoor index for $d=1$ and is equal to $\frac{\log T}{T}$ for $d=2$. Secondly, we show that is not possible to find an estimator with faster rates of estimation. Indeed, we get some lower bounds with the same rates $\{\frac{1}{T},\frac{\log T}{T}\}$ in the mono and bi-dimensional cases, respectively. Finally, we obtain the asymptotic normality of the estimator in the one-dimensional case.

相關內容

Although robust learning and local differential privacy are both widely studied fields of research, combining the two settings is just starting to be explored. We consider the problem of estimating a discrete distribution in total variation from $n$ contaminated data batches under a local differential privacy constraint. A fraction $1-\epsilon$ of the batches contain $k$ i.i.d. samples drawn from a discrete distribution $p$ over $d$ elements. To protect the users' privacy, each of the samples is privatized using an $\alpha$-locally differentially private mechanism. The remaining $\epsilon n $ batches are an adversarial contamination. The minimax rate of estimation under contamination alone, with no privacy, is known to be $\epsilon/\sqrt{k}+\sqrt{d/kn}$, up to a $\sqrt{\log(1/\epsilon)}$ factor. Under the privacy constraint alone, the minimax rate of estimation is $\sqrt{d^2/\alpha^2 kn}$. We show that combining the two constraints leads to a minimax estimation rate of $\epsilon\sqrt{d/\alpha^2 k}+\sqrt{d^2/\alpha^2 kn}$ up to a $\sqrt{\log(1/\epsilon)}$ factor, larger than the sum of the two separate rates. We provide a polynomial-time algorithm achieving this bound, as well as a matching information theoretic lower bound.

We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.

We consider M-estimation problems, where the target value is determined using a minimizer of an expected functional of a Levy process. With discrete observations from the Levy process, we can produce a "quasi-path" by shuffling increments of the Levy process, we call it a quasi-process. Under a suitable sampling scheme, a quasi-process can converge weakly to the true process according to the properties of the stationary and independent increments. Using this resampling technique, we can estimate objective functionals similar to those estimated using the Monte Carlo simulations, and it is available as a contrast function. The M-estimator based on these quasi-processes can be consistent and asymptotically normal.

Existing inferential methods for small area data involve a trade-off between maintaining area-level frequentist coverage rates and improving inferential precision via the incorporation of indirect information. In this article, we propose a method to obtain an area-level prediction region for a future observation which mitigates this trade-off. The proposed method takes a conformal prediction approach in which the conformity measure is the posterior predictive density of a working model that incorporates indirect information. The resulting prediction region has guaranteed frequentist coverage regardless of the working model, and, if the working model assumptions are accurate, the region has minimum expected volume compared to other regions with the same coverage rate. When constructed under a normal working model, we prove such a prediction region is an interval and construct an efficient algorithm to obtain the exact interval. We illustrate the performance of our method through simulation studies and an application to EPA radon survey data.

In the storied Colonel Blotto game, two colonels allocate $a$ and $b$ troops, respectively, to $k$ distinct battlefields. A colonel wins a battle if they assign more troops to that particular battle, and each colonel seeks to maximize their total number of victories. Despite the problem's formulation in 1921, the first polynomial-time algorithm to compute Nash equilibrium (NE) strategies for this game was discovered only quite recently. In 2016, \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} formulated a breakthrough algorithm to compute NE strategies for the Colonel Blotto game\footnote{To the best of our knowledge, the algorithm from \citep{ahmadinejad_dehghani_hajiaghayi_lucier_mahini_seddighin_2019} has computational complexity $O(k^{14}\max\{a,b\}^{13})$}, receiving substantial media coverage (e.g. \citep{Insider}, \citep{NSF}, \citep{ScienceDaily}). In this work, we present the first known $\epsilon$-approximation algorithm to compute NE strategies in the two-player Colonel Blotto game in runtime $\widetilde{O}(\epsilon^{-4} k^8 \max\{a,b\}^2)$ for arbitrary settings of these parameters. Moreover, this algorithm computes approximate coarse correlated equilibrium strategies in the multiplayer (continuous and discrete) Colonel Blotto game (when there are $\ell > 2$ colonels) with runtime $\widetilde{O}(\ell \epsilon^{-4} k^8 n^2 + \ell^2 \epsilon^{-2} k^3 n (n+k))$, where $n$ is the maximum troop count. Before this work, no polynomial-time algorithm was known to compute exact or approximate equilibrium (in any sense) strategies for multiplayer Colonel Blotto with arbitrary parameters. Our algorithm computes these approximate equilibria by a novel (to the author's knowledge) sampling technique with which we implicitly perform multiplicative weights update over the exponentially many strategies available to each player.

Let $X^{(n)}$ be an observation sampled from a distribution $P_{\theta}^{(n)}$ with an unknown parameter $\theta,$ $\theta$ being a vector in a Banach space $E$ (most often, a high-dimensional space of dimension $d$). We study the problem of estimation of $f(\theta)$ for a functional $f:E\mapsto {\mathbb R}$ of some smoothness $s>0$ based on an observation $X^{(n)}\sim P_{\theta}^{(n)}.$ Assuming that there exists an estimator $\hat \theta_n=\hat \theta_n(X^{(n)})$ of parameter $\theta$ such that $\sqrt{n}(\hat \theta_n-\theta)$ is sufficiently close in distribution to a mean zero Gaussian random vector in $E,$ we construct a functional $g:E\mapsto {\mathbb R}$ such that $g(\hat \theta_n)$ is an asymptotically normal estimator of $f(\theta)$ with $\sqrt{n}$ rate provided that $s>\frac{1}{1-\alpha}$ and $d\leq n^{\alpha}$ for some $\alpha\in (0,1).$ We also derive general upper bounds on Orlicz norm error rates for estimator $g(\hat \theta)$ depending on smoothness $s,$ dimension $d,$ sample size $n$ and the accuracy of normal approximation of $\sqrt{n}(\hat \theta_n-\theta).$ In particular, this approach yields asymptotically efficient estimators in some high-dimensional exponential models.

We introduce a novel methodology for particle filtering in dynamical systems where the evolution of the signal of interest is described by a SDE and observations are collected instantaneously at prescribed time instants. The new approach includes the discretisation of the SDE and the design of efficient particle filters for the resulting discrete-time state-space model. The discretisation scheme converges with weak order 1 and it is devised to create a sequential dependence structure along the coordinates of the discrete-time state vector. We introduce a class of space-sequential particle filters that exploits this structure to improve performance when the system dimension is large. This is numerically illustrated by a set of computer simulations for a stochastic Lorenz 96 system with additive noise. The new space-sequential particle filters attain approximately constant estimation errors as the dimension of the Lorenz 96 system is increased, with a computational cost that increases polynomially, rather than exponentially, with the system dimension. Besides the new numerical scheme and particle filters, we provide in this paper a general framework for discrete-time filtering in continuous-time dynamical systems described by a SDE and instantaneous observations. Provided that the SDE is discretised using a weakly-convergent scheme, we prove that the marginal posterior laws of the resulting discrete-time state-space model converge to the posterior marginal posterior laws of the original continuous-time state-space model under a suitably defined metric. This result is general and not restricted to the numerical scheme or particle filters specifically studied in this manuscript.

Policy gradient (PG) estimation becomes a challenge when we are not allowed to sample with the target policy but only have access to a dataset generated by some unknown behavior policy. Conventional methods for off-policy PG estimation often suffer from either significant bias or exponentially large variance. In this paper, we propose the double Fitted PG estimation (FPG) algorithm. FPG can work with an arbitrary policy parameterization, assuming access to a Bellman-complete value function class. In the case of linear value function approximation, we provide a tight finite-sample upper bound on policy gradient estimation error, that is governed by the amount of distribution mismatch measured in feature space. We also establish the asymptotic normality of FPG estimation error with a precise covariance characterization, which is further shown to be statistically optimal with a matching Cramer-Rao lower bound. Empirically, we evaluate the performance of FPG on both policy gradient estimation and policy optimization, using either softmax tabular or ReLU policy networks. Under various metrics, our results show that FPG significantly outperforms existing off-policy PG estimation methods based on importance sampling and variance reduction techniques.

The minimum energy path (MEP) describes the mechanism of reaction, and the energy barrier along the path can be used to calculate the reaction rate in thermal systems. The nudged elastic band (NEB) method is one of the most commonly used schemes to compute MEPs numerically. It approximates an MEP by a discrete set of configuration images, where the discretization size determines both computational cost and accuracy of the simulations. In this paper, we consider a discrete MEP to be a stationary state of the NEB method and prove an optimal convergence rate of the discrete MEP with respect to the number of images. Numerical simulations for the transitions of some several proto-typical model systems are performed to support the theory.

We present a new sublinear time algorithm for approximating the spectral density (eigenvalue distribution) of an $n\times n$ normalized graph adjacency or Laplacian matrix. The algorithm recovers the spectrum up to $\epsilon$ accuracy in the Wasserstein-1 distance in $O(n\cdot \text{poly}(1/\epsilon))$ time given sample access to the graph. This result compliments recent work by David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant (2018), which obtains a solution with runtime independent of $n$, but exponential in $1/\epsilon$. We conjecture that the trade-off between dimension dependence and accuracy is inherent. Our method is simple and works well experimentally. It is based on a Chebyshev polynomial moment matching method that employees randomized estimators for the matrix trace. We prove that, for any Hermitian $A$, this moment matching method returns an $\epsilon$ approximation to the spectral density using just $O({1}/{\epsilon})$ matrix-vector products with $A$. By leveraging stability properties of the Chebyshev polynomial three-term recurrence, we then prove that the method is amenable to the use of coarse approximate matrix-vector products. Our sublinear time algorithm follows from combining this result with a novel sampling algorithm for approximating matrix-vector products with a normalized graph adjacency matrix. Of independent interest, we show a similar result for the widely used \emph{kernel polynomial method} (KPM), proving that this practical algorithm nearly matches the theoretical guarantees of our moment matching method. Our analysis uses tools from Jackson's seminal work on approximation with positive polynomial kernels.

北京阿比特科技有限公司