亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While traditional deep learning models often lack interpretability, concept bottleneck models (CBMs) provide inherent explanations via their concept representations. Specifically, they allow users to perform interventional interactions on these concepts by updating the concept values and thus correcting the predictive output of the model. Traditionally, however, these interventions are applied to the model only once and discarded afterward. To rectify this, we present concept bottleneck memory models (CB2M), an extension to CBMs. Specifically, a CB2M learns to generalize interventions to appropriate novel situations via a two-fold memory with which it can learn to detect mistakes and to reapply previous interventions. In this way, a CB2M learns to automatically improve model performance from a few initially obtained interventions. If no prior human interventions are available, a CB2M can detect potential mistakes of the CBM bottleneck and request targeted interventions. In our experimental evaluations on challenging scenarios like handling distribution shifts and confounded training data, we illustrate that CB2M are able to successfully generalize interventions to unseen data and can indeed identify wrongly inferred concepts. Overall, our results show that CB2M is a great tool for users to provide interactive feedback on CBMs, e.g., by guiding a user's interaction and requiring fewer interventions.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 優化器 · Extensibility · INTERACT · 差分進化 ·
2024 年 5 月 20 日

This study explores the influence of modules on the performance of modular optimization frameworks for continuous single-objective black-box optimization. There is an extensive variety of modules to choose from when designing algorithm variants, however, there is a rather limited understanding of how each module individually influences the algorithm performance and how the modules interact with each other when combined. We use the functional ANOVA (f-ANOVA) framework to quantify the influence of individual modules and module combinations for two algorithms, the modular Covariance Matrix Adaptation (modCMA) and the modular Differential Evolution (modDE). We analyze the performance data from 324 modCMA and 576 modDE variants on the BBOB benchmark collection, for two problem dimensions, and three computational budgets. Noteworthy findings include the identification of important modules that strongly influence the performance of modCMA, such as the~\textit{weights\ option} and~\textit{mirrored} modules for low dimensional problems, and the~\textit{base\ sampler} for high dimensional problems. The large individual influence of the~\textit{lpsr} module makes it very important for the performance of modDE, regardless of the problem dimensionality and the computational budget. When comparing modCMA and modDE, modDE undergoes a shift from individual modules being more influential, to module combinations being more influential, while modCMA follows the opposite pattern, with an increase in problem dimensionality and computational budget.

Annotated datasets are an essential ingredient to train, evaluate, compare and productionalize supervised machine learning models. It is therefore imperative that annotations are of high quality. For their creation, good quality management and thereby reliable quality estimates are needed. Then, if quality is insufficient during the annotation process, rectifying measures can be taken to improve it. Quality estimation is often performed by having experts manually label instances as correct or incorrect. But checking all annotated instances tends to be expensive. Therefore, in practice, usually only subsets are inspected; sizes are chosen mostly without justification or regard to statistical power and more often than not, are relatively small. Basing estimates on small sample sizes, however, can lead to imprecise values for the error rate. Using unnecessarily large sample sizes costs money that could be better spent, for instance on more annotations. Therefore, we first describe in detail how to use confidence intervals for finding the minimal sample size needed to estimate the annotation error rate. Then, we propose applying acceptance sampling as an alternative to error rate estimation We show that acceptance sampling can reduce the required sample sizes up to 50% while providing the same statistical guarantees.

Active learning optimizes the exploration of large parameter spaces by strategically selecting which experiments or simulations to conduct, thus reducing resource consumption and potentially accelerating scientific discovery. A key component of this approach is a probabilistic surrogate model, typically a Gaussian Process (GP), which approximates an unknown functional relationship between control parameters and a target property. However, conventional GPs often struggle when applied to systems with discontinuities and non-stationarities, prompting the exploration of alternative models. This limitation becomes particularly relevant in physical science problems, which are often characterized by abrupt transitions between different system states and rapid changes in physical property behavior. Fully Bayesian Neural Networks (FBNNs) serve as a promising substitute, treating all neural network weights probabilistically and leveraging advanced Markov Chain Monte Carlo techniques for direct sampling from the posterior distribution. This approach enables FBNNs to provide reliable predictive distributions, crucial for making informed decisions under uncertainty in the active learning setting. Although traditionally considered too computationally expensive for 'big data' applications, many physical sciences problems involve small amounts of data in relatively low-dimensional parameter spaces. Here, we assess the suitability and performance of FBNNs with the No-U-Turn Sampler for active learning tasks in the 'small data' regime, highlighting their potential to enhance predictive accuracy and reliability on test functions relevant to problems in physical sciences.

We propose the idea of using Kuramoto models (including their higher-dimensional generalizations) for machine learning over non-Euclidean data sets. These models are systems of matrix ODE's describing collective motions (swarming dynamics) of abstract particles (generalized oscillators) on spheres, homogeneous spaces and Lie groups. Such models have been extensively studied from the beginning of XXI century both in statistical physics and control theory. They provide a suitable framework for encoding maps between various manifolds and are capable of learning over spherical and hyperbolic geometries. In addition, they can learn coupled actions of transformation groups (such as special orthogonal, unitary and Lorentz groups). Furthermore, we overview families of probability distributions that provide appropriate statistical models for probabilistic modeling and inference in Geometric Deep Learning. We argue in favor of using statistical models which arise in different Kuramoto models in the continuum limit of particles. The most convenient families of probability distributions are those which are invariant with respect to actions of certain symmetry groups.

Domain generalization aims to develop models that are robust to distribution shifts. Existing methods focus on learning invariance across domains to enhance model robustness, and data augmentation has been widely used to learn invariant predictors, with most methods performing augmentation in the input space. However, augmentation in the input space has limited diversity whereas in the feature space is more versatile and has shown promising results. Nonetheless, feature semantics is seldom considered and existing feature augmentation methods suffer from a limited variety of augmented features. We decompose features into class-generic, class-specific, domain-generic, and domain-specific components. We propose a cross-domain feature augmentation method named XDomainMix that enables us to increase sample diversity while emphasizing the learning of invariant representations to achieve domain generalization. Experiments on widely used benchmark datasets demonstrate that our proposed method is able to achieve state-of-the-art performance. Quantitative analysis indicates that our feature augmentation approach facilitates the learning of effective models that are invariant across different domains.

We consider an active learning setting where a learner is presented with a pool S of n unlabeled examples belonging to a domain X and asks queries to find the underlying labeling that agrees with a target concept h^* \in H. In contrast to traditional active learning that queries a single example for its label, we study more general region queries that allow the learner to pick a subset of the domain T \subset X and a target label y and ask a labeler whether h^*(x) = y for every example in the set T \cap S. Such more powerful queries allow us to bypass the limitations of traditional active learning and use significantly fewer rounds of interactions to learn but can potentially lead to a significantly more complex query language. Our main contribution is quantifying the trade-off between the number of queries and the complexity of the query language used by the learner. We measure the complexity of the region queries via the VC dimension of the family of regions. We show that given any hypothesis class H with VC dimension d, one can design a region query family Q with VC dimension O(d) such that for every set of n examples S \subset X and every h^* \in H, a learner can submit O(d log n) queries from Q to a labeler and perfectly label S. We show a matching lower bound by designing a hypothesis class H with VC dimension d and a dataset S \subset X of size n such that any learning algorithm using any query class with VC dimension O(d) must make poly(n) queries to label S perfectly. Finally, we focus on well-studied hypothesis classes including unions of intervals, high-dimensional boxes, and d-dimensional halfspaces, and obtain stronger results. In particular, we design learning algorithms that (i) are computationally efficient and (ii) work even when the queries are not answered based on the learner's pool of examples S but on some unknown superset L of S

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司