Large language models (LLMs) have made transformed changes for human society. One of the key computation in LLMs is the softmax unit. This operation is important in LLMs because it allows the model to generate a distribution over possible next words or phrases, given a sequence of input words. This distribution is then used to select the most likely next word or phrase, based on the probabilities assigned by the model. The softmax unit plays a crucial role in training LLMs, as it allows the model to learn from the data by adjusting the weights and biases of the neural network. In the area of convex optimization such as using central path method to solve linear programming. The softmax function has been used a crucial tool for controlling the progress and stability of potential function [Cohen, Lee and Song STOC 2019, Brand SODA 2020]. In this work, inspired the softmax unit, we define a softmax regression problem. Formally speaking, given a matrix $A \in \mathbb{R}^{n \times d}$ and a vector $b \in \mathbb{R}^n$, the goal is to use greedy type algorithm to solve \begin{align*} \min_{x} \| \langle \exp(Ax), {\bf 1}_n \rangle^{-1} \exp(Ax) - b \|_2^2. \end{align*} In certain sense, our provable convergence result provides theoretical support for why we can use greedy algorithm to train softmax function in practice.
When estimating a regression model, we might have data where some labels are missing, or our data might be biased by a selection mechanism. When the response or selection mechanism is ignorable (i.e., independent of the response variable given the features) one can use off-the-shelf regression methods; in the nonignorable case one typically has to adjust for bias. We observe that privileged information (i.e. information that is only available during training) might render a nonignorable selection mechanism ignorable, and we refer to this scenario as Privilegedly Missing at Random (PMAR). We propose a novel imputation-based regression method, named repeated regression, that is suitable for PMAR. We also consider an importance weighted regression method, and a doubly robust combination of the two. The proposed methods are easy to implement with most popular out-of-the-box regression algorithms. We empirically assess the performance of the proposed methods with extensive simulated experiments and on a synthetically augmented real-world dataset. We conclude that repeated regression can appropriately correct for bias, and can have considerable advantage over weighted regression, especially when extrapolating to regions of the feature space where response is never observed.
We live in a data-driven era that involves the generation, collection and processing of a massive amount of data. This data often contains valuable intellectual property and sensitive user information that must be safeguarded. There is a need to both encrypt and compress the data at line speed and sometimes with added power constraints. The majority of the currently available simultaneous compression and encryption (SCE) schemes are tailored for a specific type of data such as images for instance. This reduces their generic applicability. In this paper, we tackle this issue and propose a generic, efficient, and secure simultaneous compression and encryption scheme where the data is simultaneously encrypted using chaotic maps and compressed using a fast lossless compression algorithm. We claim that employing multiple chaotic maps and a lossless compression method can help us create not only an efficient encryption scheme but also compress the data efficiently in a hardware-friendly manner. We avoid all the known pitfalls of chaos theory based encryption that have prevented its widespread usage. Our algorithm passes all the NIST tests for nine different types of popular datasets. The proposed implementation uses 1.51x less storage as compared to the nearest computing work.
In this paper, we develop an {\em epsilon admissible subsets} (EAS) model selection approach for performing group variable selection in the high-dimensional multivariate regression setting. This EAS strategy is designed to estimate a posterior-like, generalized fiducial distribution over a parsimonious class of models in the setting of correlated predictors and/or in the absence of a sparsity assumption. The effectiveness of our approach, to this end, is demonstrated empirically in simulation studies, and is compared to other state-of-the-art model/variable selection procedures. Furthermore, assuming a matrix-Normal linear model we show that the EAS strategy achieves {\em strong model selection consistency} in the high-dimensional setting if there does exist a sparse, true data generating set of predictors. In contrast to Bayesian approaches for model selection, our generalized fiducial approach completely avoids the problem of simultaneously having to specify arbitrary prior distributions for model parameters and penalize model complexity; our approach allows for inference directly on the model complexity. \textcolor{black}{Implementation of the method is illustrated through yeast data to identify significant cell-cycle regulating transcription factors.
Language models have been successfully used to model natural signals, such as images, speech, and music. A key component of these models is a high quality neural compression model that can compress high-dimensional natural signals into lower dimensional discrete tokens. To that end, we introduce a high-fidelity universal neural audio compression algorithm that achieves ~90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining advances in high-fidelity audio generation with better vector quantization techniques from the image domain, along with improved adversarial and reconstruction losses. We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio. We compare with competing audio compression algorithms, and find our method outperforms them significantly. We provide thorough ablations for every design choice, as well as open-source code and trained model weights. We hope our work can lay the foundation for the next generation of high-fidelity audio modeling.
In this paper, we study the estimation of the derivative of a regression function in a standard univariate regression model. The estimators are defined either by derivating nonparametric least-squares estimators of the regression function or by estimating the projection of the derivative. We prove two simple risk bounds allowing to compare our estimators. More elaborate bounds under a stability assumption are then provided. Bases and spaces on which we can illustrate our assumptions and first results are both of compact or non compact type, and we discuss the rates reached by our estimators. They turn out to be optimal in the compact case. Lastly, we propose a model selection procedure and prove the associated risk bound. To consider bases with a non compact support makes the problem difficult.
Considering the field of functional data analysis, we developed a new Bayesian method for variable selection in function-on-scalar regression (FOSR). Our approach uses latent variables, allowing an adaptive selection since it can determine the number of variables and which ones should be selected for a function-on-scalar regression model. Simulation studies show the proposed method's main properties, such as its accuracy in estimating the coefficients and high capacity to select variables correctly. Furthermore, we conducted comparative studies with the main competing methods, such as the BGLSS method as well as the group LASSO, the group MCP and the group SCAD. We also used a COVID-19 dataset and some socioeconomic data from Brazil for real data application. In short, the proposed Bayesian variable selection model is extremely competitive, showing significant predictive and selective quality.
Neural network (NN) compression via techniques such as pruning, quantization requires setting compression hyperparameters (e.g., number of channels to be pruned, bitwidths for quantization) for each layer either manually or via neural architecture search (NAS) which can be computationally expensive. We address this problem by providing an end-to-end technique that optimizes for model's Floating Point Operations (FLOPs) or for on-device latency via a novel $\frac{\ell_1}{\ell_2}$ latency surrogate. Our algorithm is versatile and can be used with many popular compression methods including pruning, low-rank factorization, and quantization. Crucially, it is fast and runs in almost the same amount of time as single model training; which is a significant training speed-up over standard NAS methods. For BERT compression on GLUE fine-tuning tasks, we achieve $50\%$ reduction in FLOPs with only $1\%$ drop in performance. For compressing MobileNetV3 on ImageNet-1K, we achieve $15\%$ reduction in FLOPs, and $11\%$ reduction in on-device latency without drop in accuracy, while still requiring $3\times$ less training compute than SOTA compression techniques. Finally, for transfer learning on smaller datasets, our technique identifies $1.2\times$-$1.4\times$ cheaper architectures than standard MobileNetV3, EfficientNet suite of architectures at almost the same training cost and accuracy.
Supervised learning problems with side information in the form of a network arise frequently in applications in genomics, proteomics and neuroscience. For example, in genetic applications, the network side information can accurately capture background biological information on the intricate relations among the relevant genes. In this paper, we initiate a study of Bayes optimal learning in high-dimensional linear regression with network side information. To this end, we first introduce a simple generative model (called the Reg-Graph model) which posits a joint distribution for the supervised data and the observed network through a common set of latent parameters. Next, we introduce an iterative algorithm based on Approximate Message Passing (AMP) which is provably Bayes optimal under very general conditions. In addition, we characterize the limiting mutual information between the latent signal and the data observed, and thus precisely quantify the statistical impact of the network side information. Finally, supporting numerical experiments suggest that the introduced algorithm has excellent performance in finite samples.
Automated variable selection is widely applied in statistical model development. Algorithms like forward, backward or stepwise selection are available in statistical software packages like R and SAS. Many researchers have criticized the use of these algorithms because the models resulting from automated selection algorithms are not based on theory and tend to be unstable. Furthermore, simulation studies have shown that they often select incorrect variables due to random effects which makes these model building strategies unreliable. In this article, a comprehensive stepwise selection algorithm tailored to logistic regression is proposed. It uses multiple criteria in variable selection instead of relying on one single measure only, like a $p$-value or Akaike's information criterion, which ensures robustness and soundness of the final outcome. The result of the selection process might not be unambiguous. It might select multiple models that could be considered as statistically equivalent. A simulation study demonstrates the superiority of the proposed variable selection method over available alternatives.
Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.