亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Few-shot object detection, which focuses on detecting novel objects with few labels, is an emerging challenge in the community. Recent studies show that adapting a pre-trained model or modified loss function can improve performance. In this paper, we explore leveraging the power of Contrastive Language-Image Pre-training (CLIP) and hard negative classification loss in low data setting. Specifically, we propose Re-scoring using Image-language Similarity for Few-shot object detection (RISF) which extends Faster R-CNN by introducing Calibration Module using CLIP (CM-CLIP) and Background Negative Re-scale Loss (BNRL). The former adapts CLIP, which performs zero-shot classification, to re-score the classification scores of a detector using image-class similarities, the latter is modified classification loss considering the punishment for fake backgrounds as well as confusing categories on a generalized few-shot object detection dataset. Extensive experiments on MS-COCO and PASCAL VOC show that the proposed RISF substantially outperforms the state-of-the-art approaches. The code will be available.

相關內容

小樣本學習(Few-Shot Learning,以下簡稱 FSL )用于解決當可用的數據量比較少時,如何提升神經網絡的性能。在 FSL 中,經常用到的一類方法被稱為 Meta-learning。和普通的神經網絡的訓練方法一樣,Meta-learning 也包含訓練過程和測試過程,但是它的訓練過程被稱作 Meta-training 和 Meta-testing。

Despite weakly supervised object detection (WSOD) being a promising step toward evading strong instance-level annotations, its capability is confined to closed-set categories within a single training dataset. In this paper, we propose a novel weakly supervised open-vocabulary object detection framework, namely WSOVOD, to extend traditional WSOD to detect novel concepts and utilize diverse datasets with only image-level annotations. To achieve this, we explore three vital strategies, including dataset-level feature adaptation, image-level salient object localization, and region-level vision-language alignment. First, we perform data-aware feature extraction to produce an input-conditional coefficient, which is leveraged into dataset attribute prototypes to identify dataset bias and help achieve cross-dataset generalization. Second, a customized location-oriented weakly supervised region proposal network is proposed to utilize high-level semantic layouts from the category-agnostic segment anything model to distinguish object boundaries. Lastly, we introduce a proposal-concept synchronized multiple-instance network, i.e., object mining and refinement with visual-semantic alignment, to discover objects matched to the text embeddings of concepts. Extensive experiments on Pascal VOC and MS COCO demonstrate that the proposed WSOVOD achieves new state-of-the-art compared with previous WSOD methods in both close-set object localization and detection tasks. Meanwhile, WSOVOD enables cross-dataset and open-vocabulary learning to achieve on-par or even better performance than well-established fully-supervised open-vocabulary object detection (FSOVOD).

While decentralized training is attractive in multi-agent reinforcement learning (MARL) for its excellent scalability and robustness, its inherent coordination challenges in collaborative tasks result in numerous interactions for agents to learn good policies. To alleviate this problem, action advising methods make experienced agents share their knowledge about what to do, while less experienced agents strictly follow the received advice. However, this method of sharing and utilizing knowledge may hinder the team's exploration of better states, as agents can be unduly influenced by suboptimal or even adverse advice, especially in the early stages of learning. Inspired by the fact that humans can learn not only from the success but also from the failure of others, this paper proposes a novel knowledge sharing framework called Cautiously-Optimistic kNowledge Sharing (CONS). CONS enables each agent to share both positive and negative knowledge and cautiously assimilate knowledge from others, thereby enhancing the efficiency of early-stage exploration and the agents' robustness to adverse advice. Moreover, considering the continuous improvement of policies, agents value negative knowledge more in the early stages of learning and shift their focus to positive knowledge in the later stages. Our framework can be easily integrated into existing Q-learning based methods without introducing additional training costs. We evaluate CONS in several challenging multi-agent tasks and find it excels in environments where optimal behavioral patterns are difficult to discover, surpassing the baselines in terms of convergence rate and final performance.

Recent approaches in Incomplete Utterance Rewriting (IUR) fail to capture the source of important words, which is crucial to edit the incomplete utterance, and introduce words from irrelevant utterances. We propose a novel and effective multi-task information interaction framework including context selection, edit matrix construction, and relevance merging to capture the multi-granularity of semantic information. Benefiting from fetching the relevant utterance and figuring out the important words, our approach outperforms existing state-of-the-art models on two benchmark datasets Restoration-200K and CANAND in this field. Code will be provided on \url{//github.com/yanmenxue/QR}.

Autonomous vehicles (AVs) must accurately detect objects from both common and rare classes for safe navigation, motivating the problem of Long-Tailed 3D Object Detection (LT3D). Contemporary LiDAR-based 3D detectors perform poorly on rare classes (e.g., CenterPoint only achieves 5.1 AP on stroller) as it is difficult to recognize objects from sparse LiDAR points alone. RGB images provide visual evidence to help resolve such ambiguities, motivating the study of RGB-LiDAR fusion. In this paper, we delve into a simple late-fusion framework that ensembles independently trained RGB and LiDAR detectors. Unlike recent end-to-end methods which require paired multi-modal training data, our late-fusion approach can easily leverage large-scale uni-modal datasets, significantly improving rare class detection.In particular, we examine three critical components in this late-fusion framework from first principles, including whether to train 2D or 3D RGB detectors, whether to match RGB and LiDAR detections in 3D or the projected 2D image plane, and how to fuse matched detections.Extensive experiments reveal that 2D RGB detectors achieve better recognition accuracy than 3D RGB detectors, matching on the 2D image plane mitigates depth estimation errors, and fusing scores probabilistically with calibration leads to state-of-the-art LT3D performance. Our late-fusion approach achieves 51.4 mAP on the established nuScenes LT3D benchmark, improving over prior work by 5.9 mAP.

Deep learning models have been widely used during the last decade due to their outstanding learning and abstraction capacities. However, one of the main challenges any scientist has to face using deep learning models is to establish the network's architecture. Due to this difficulty, data scientists usually build over complex models and, as a result, most of them result computationally intensive and impose a large memory footprint, generating huge costs, contributing to climate change and hindering their use in computational-limited devices. In this paper, we propose a novel feed-forward neural network constructing method based on pruning and transfer learning. Its performance has been thoroughly assessed in classification and regression problems. Without any accuracy loss, our approach can compress the number of parameters by more than 70%. Even further, choosing the pruning parameter carefully, most of the refined models outperform original ones. We also evaluate the transfer learning level comparing the refined model and the original one training from scratch a neural network with the same hyper parameters as the optimized model. The results obtained show that our constructing method not only helps in the design of more efficient models but also more effective ones.

While coresets have been growing in terms of their application, barring few exceptions, they have mostly been limited to unsupervised settings. We consider supervised classification problems, and non-decomposable evaluation measures in such settings. We show that stratified uniform sampling based coresets have excellent empirical performance that are backed by theoretical guarantees too. We focus on the F1 score and Matthews Correlation Coefficient, two widely used non-decomposable objective functions that are nontrivial to optimize for and show that uniform coresets attain a lower bound for coreset size, and have good empirical performance, comparable with ``smarter'' coreset construction strategies.

Efficiently computing spatio-textual queries has become increasingly important in various applications that need to quickly retrieve geolocated entities associated with textual information, such as in location-based services and social networks. To accelerate such queries, several works have proposed combining spatial and textual indices into hybrid index structures. Recently, the novel idea of replacing traditional indices with ML models has attracted a lot of attention. This includes works on learned spatial indices, where the main challenge is to address the lack of a total ordering among objects in a multidimensional space. In this work, we investigate how to extend this novel type of index design to the case of spatio-textual data. We study different design choices, based on either loose or tight coupling between the spatial and textual part, as well as a hybrid index that combines a traditional and a learned component. We also perform an experimental evaluation using several real-world datasets to assess the potential benefits of using a learned index for evaluating spatio-textual queries.

Sequential recommendation models are crucial for next-item recommendations in online platforms, capturing complex patterns in user interactions. However, many focus on a single behavior, overlooking valuable implicit interactions like clicks and favorites. Existing multi-behavioral models often fail to simultaneously capture sequential patterns. We propose CASM, a Context-Aware Sequential Model, leveraging sequential models to seamlessly handle multiple behaviors. CASM employs context-aware multi-head self-attention for heterogeneous historical interactions and a weighted binary cross-entropy loss for precise control over behavior contributions. Experimental results on four datasets demonstrate CASM's superiority over state-of-the-art approaches.

Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.

Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.

北京阿比特科技有限公司