This article investigates the weak approximation towards the invariant measure of semi-linear stochastic differential equations (SDEs) under non-globally Lipschitz coefficients. For this purpose, we propose a linear-theta-projected Euler (LTPE) scheme, which also admits an invariant measure, to handle the potential influence of the linear stiffness. Under certain assumptions, both the SDE and the corresponding LTPE method are shown to converge exponentially to the underlying invariant measures, respectively. Moreover, with time-independent regularity estimates for the corresponding Kolmogorov equation, the weak error between the numerical invariant measure and the original one can be guaranteed with convergence of order one. In terms of computational complexity, the proposed ergodicity preserving scheme with the nonlinearity explicitly treated has a significant advantage over the ergodicity preserving implicit Euler method in the literature. Numerical experiments are provided to verify our theoretical findings.
Challenges to reproducibility and replicability have gained widespread attention over the past decade, driven by a number of large replication projects with lukewarm success rates. A nascent work has emerged developing algorithms to estimate, or predict, the replicability of published findings. The current study explores ways in which AI-enabled signals of confidence in research might be integrated into literature search. We interview 17 PhD researchers about their current processes for literature search and ask them to provide feedback on a prototype replicability estimation tool. Our findings suggest that information about replicability can support researchers throughout literature review and research design processes. However, explainability and interpretability of system outputs is critical, and potential drawbacks of AI-enabled confidence assessment need to be further studied before such tools could be widely accepted and deployed. We discuss implications for the design of technological tools to support scholarly activities and advance reproducibility and replicability.
We study pointwise estimation and uncertainty quantification for a sparse variational Gaussian process method with eigenvector inducing variables. For a rescaled Brownian motion prior, we derive theoretical guarantees and limitations for the frequentist size and coverage of pointwise credible sets. For sufficiently many inducing variables, we precisely characterize the asymptotic frequentist coverage, deducing when credible sets from this variational method are conservative and when overconfident/misleading. We numerically illustrate the applicability of our results and discuss connections with other common Gaussian process priors.
Motivated by models of human decision making proposed to explain commonly observed deviations from conventional expected value preferences, we formulate two stochastic multi-armed bandit problems with distorted probabilities on the reward distributions: the classic $K$-armed bandit and the linearly parameterized bandit settings. We consider the aforementioned problems in the regret minimization as well as best arm identification framework for multi-armed bandits. For the regret minimization setting in $K$-armed as well as linear bandit problems, we propose algorithms that are inspired by Upper Confidence Bound (UCB) algorithms, incorporate reward distortions, and exhibit sublinear regret. For the $K$-armed bandit setting, we derive an upper bound on the expected regret for our proposed algorithm, and then we prove a matching lower bound to establish the order-optimality of our algorithm. For the linearly parameterized setting, our algorithm achieves a regret upper bound that is of the same order as that of regular linear bandit algorithm called Optimism in the Face of Uncertainty Linear (OFUL) bandit algorithm, and unlike OFUL, our algorithm handles distortions and an arm-dependent noise model. For the best arm identification problem in the $K$-armed bandit setting, we propose algorithms, derive guarantees on their performance, and also show that these algorithms are order optimal by proving matching fundamental limits on performance. For best arm identification in linear bandits, we propose an algorithm and establish sample complexity guarantees. Finally, we present simulation experiments which demonstrate the advantages resulting from using distortion-aware learning algorithms in a vehicular traffic routing application.
A convincing feature of least-squares finite element methods is the built-in a posteriori error estimator for any conforming discretization. In order to generalize this property to discontinuous finite element ansatz functions, this paper introduces a least-squares principle on piecewise Sobolev functions for the solution of the Poisson model problem in 2D with mixed boundary conditions. It allows for fairly general discretizations including standard piecewise polynomial ansatz spaces on triangular and polygonal meshes. The presented scheme enforces the interelement continuity of the piecewise polynomials by additional least-squares residuals. A side condition on the normal jumps of the flux variable requires a vanishing integral mean and enables a natural weighting of the jump in the least-squares functional in terms of the mesh size. This avoids over-penalization with additional regularity assumptions on the exact solution as usually present in the literature on discontinuous LSFEM. The proof of the built-in a posteriori error estimation for the over-penalized scheme is presented as well. All results in this paper are robust with respect to the size of the domain guaranteed by a suitable weighting of the residuals in the least-squares functional. Numerical experiments exhibit optimal convergence rates of the adaptive mesh-refining algorithm for various polynomial degrees.
We numerically investigate the generalized Steklov problem for the modified Helmholtz equation and focus on the relation between its spectrum and the geometric structure of the domain. We address three distinct aspects: (i) the asymptotic behavior of eigenvalues for polygonal domains; (ii) the dependence of the integrals of eigenfunctions on the domain symmetries; and (iii) the localization and exponential decay of Steklov eigenfunctions away from the boundary for smooth shapes and in the presence of corners. For this purpose, we implemented two complementary numerical methods to compute the eigenvalues and eigenfunctions of the associated Dirichlet-to-Neumann operator for various simply-connected planar domains. We also discuss applications of the obtained results in the theory of diffusion-controlled reactions and formulate several conjectures with relevance in spectral geometry.
This research study investigates the minimization of inequality in the ranks of vertices obtained using the PageRank algorithm. PageRank is a widely used algorithm for ranking webpages and plays a significant role in determining web traffic. This study employs the Gini coefficient, a measure of income/wealth inequality, to assess the inequality in PageRank distributions on various types of graphs. The investigation involves two experiments: one that modifies strategies for handling dead-end nodes and another that explores six deterministic methods for reducing inequality. Our findings indicate that a combination of two distinct heuristics may present an effective strategy for minimizing inequality.
Deep learning algorithms have been widely used to solve linear Kolmogorov partial differential equations~(PDEs) in high dimensions, where the loss function is defined as a mathematical expectation. We propose to use the randomized quasi-Monte Carlo (RQMC) method instead of the Monte Carlo (MC) method for computing the loss function. In theory, we decompose the error from empirical risk minimization~(ERM) into the generalization error and the approximation error. Notably, the approximation error is independent of the sampling methods. We prove that the convergence order of the mean generalization error for the RQMC method is $O(n^{-1+\epsilon})$ for arbitrarily small $\epsilon>0$, while for the MC method it is $O(n^{-1/2+\epsilon})$ for arbitrarily small $\epsilon>0$. Consequently, we find that the overall error for the RQMC method is asymptotically smaller than that for the MC method as $n$ increases. Our numerical experiments show that the algorithm based on the RQMC method consistently achieves smaller relative $L^{2}$ error than that based on the MC method.
We consider optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs) under model uncertainty. Specifically, we consider inverse problems in which, in addition to the inversion parameters, the governing PDEs include secondary uncertain parameters. We focus on problems with infinite-dimensional inversion and secondary parameters and present a scalable computational framework for optimal design of such problems. The proposed approach enables Bayesian inversion and OED under uncertainty within a unified framework. We build on the Bayesian approximation error (BAE) approach, to incorporate modeling uncertainties in the Bayesian inverse problem, and methods for A-optimal design of infinite-dimensional Bayesian nonlinear inverse problems. Specifically, a Gaussian approximation to the posterior at the maximum a posteriori probability point is used to define an uncertainty aware OED objective that is tractable to evaluate and optimize. In particular, the OED objective can be computed at a cost, in the number of PDE solves, that does not grow with the dimension of the discretized inversion and secondary parameters. The OED problem is formulated as a binary bilevel PDE constrained optimization problem and a greedy algorithm, which provides a pragmatic approach, is used to find optimal designs. We demonstrate the effectiveness of the proposed approach for a model inverse problem governed by an elliptic PDE on a three-dimensional domain. Our computational results also highlight the pitfalls of ignoring modeling uncertainties in the OED and/or inference stages.
Threshold selection is a fundamental problem in any threshold-based extreme value analysis. While models are asymptotically motivated, selecting an appropriate threshold for finite samples can be difficult through standard methods. Inference can also be highly sensitive to the choice of threshold. Too low a threshold choice leads to bias in the fit of the extreme value model, while too high a choice leads to unnecessary additional uncertainty in the estimation of model parameters. In this paper, we develop a novel methodology for automated threshold selection that directly tackles this bias-variance trade-off. We also develop a method to account for the uncertainty in this threshold choice and propagate this uncertainty through to high quantile inference. Through a simulation study, we demonstrate the effectiveness of our method for threshold selection and subsequent extreme quantile estimation. We apply our method to the well-known, troublesome example of the River Nidd dataset.
A large literature specifies conditions under which the information complexity for a sequence of numerical problems defined for dimensions $1, 2, \ldots$ grows at a moderate rate, i.e., the sequence of problems is tractable. Here, we focus on the situation where the space of available information consists of all linear functionals and the problems are defined as linear operator mappings between Hilbert spaces. We unify the proofs of known tractability results and generalize a number of existing results. These generalizations are expressed as five theorems that provide equivalent conditions for (strong) tractability in terms of sums of functions of the singular values of the solution operators.