亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new approach to nonlinear sufficient dimension reduction in cases where both the predictor and the response are distributional data, modeled as members of a metric space. Our key step is to build universal kernels (cc-universal) on the metric spaces, which results in reproducing kernel Hilbert spaces for the predictor and response that are rich enough to characterize the conditional independence that determines sufficient dimension reduction. For univariate distributions, we construct the universal kernel using the Wasserstein distance, while for multivariate distributions, we resort to the sliced Wasserstein distance. The sliced Wasserstein distance ensures that the metric space possesses similar topological properties to the Wasserstein space while also offering significant computation benefits. Numerical results based on synthetic data show that our method outperforms possible competing methods. The method is also applied to several data sets, including fertility and mortality data and Calgary temperature data.

相關內容

We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a \emph{target space} (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the $SSO$ algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for $SSO$ when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of $SSO$.

In financial engineering, prices of financial products are computed approximately many times each trading day with (slightly) different parameters in each calculation. In many financial models such prices can be approximated by means of Monte Carlo (MC) simulations. To obtain a good approximation the MC sample size usually needs to be considerably large resulting in a long computing time to obtain a single approximation. In this paper we introduce a new approximation strategy for parametric approximation problems including the parametric financial pricing problems described above. A central aspect of the approximation strategy proposed in this article is to combine MC algorithms with machine learning techniques to, roughly speaking, learn the random variables (LRV) in MC simulations. In other words, we employ stochastic gradient descent (SGD) optimization methods not to train parameters of standard artificial neural networks (ANNs) but to learn random variables appearing in MC approximations. We numerically test the LRV strategy on various parametric problems with convincing results when compared with standard MC simulations, Quasi-Monte Carlo simulations, SGD-trained shallow ANNs, and SGD-trained deep ANNs. Our numerical simulations strongly indicate that the LRV strategy might be capable to overcome the curse of dimensionality in the $L^\infty$-norm in several cases where the standard deep learning approach has been proven not to be able to do so. This is not a contradiction to lower bounds established in the scientific literature because this new LRV strategy is outside of the class of algorithms for which lower bounds have been established in the scientific literature. The proposed LRV strategy is of general nature and not only restricted to the parametric financial pricing problems described above, but applicable to a large class of approximation problems.

Detecting an abrupt and persistent change in the underlying distribution of online data streams is an important problem in many applications. This paper proposes a new robust score-based algorithm called RSCUSUM, which can be applied to unnormalized models and addresses the issue of unknown post-change distributions. RSCUSUM replaces the Kullback-Leibler divergence with the Fisher divergence between pre- and post-change distributions for computational efficiency in unnormalized statistical models and introduces a notion of the ``least favorable'' distribution for robust change detection. The algorithm and its theoretical analysis are demonstrated through simulation studies.

Demand for reliable statistics at a local area (small area) level has greatly increased in recent years. Traditional area-specific estimators based on probability samples are not adequate because of small sample size or even zero sample size in a local area. As a result, methods based on models linking the areas are widely used. World Bank focused on estimating poverty measures, in particular poverty incidence and poverty gap called FGT measures, using a simulated census method, called ELL, based on a one-fold nested error model for a suitable transformation of the welfare variable. Modified ELL methods leading to significant gain in efficiency over ELL also have been proposed under the one-fold model. An advantage of ELL and modified ELL methods is that distributional assumptions on the random effects in the model are not needed. In this paper, we extend ELL and modified ELL to two-fold nested error models to estimate poverty indicators for areas (say a state) and subareas (say counties within a state). Our simulation results indicate that the modified ELL estimators lead to large efficiency gains over ELL at the area level and subarea level. Further, modified ELL method retaining both area and subarea estimated effects in the model (called MELL2) performs significantly better in terms of mean squared error (MSE) for sampled subareas than the modified ELL retaining only estimated area effect in the model (called MELL1).

We propose a novel $K$-nearest neighbor resampling procedure for estimating the performance of a policy from historical data containing realized episodes of a decision process generated under a different policy. We focus on feedback policies that depend deterministically on the current state in environments with continuous state-action spaces and system-inherent stochasticity effected by chosen actions. Such settings are common in a wide range of high-stake applications and are actively investigated in the context of stochastic control. Our procedure exploits that similar state/action pairs (in a metric sense) are associated with similar rewards and state transitions. This enables our resampling procedure to tackle the counterfactual estimation problem underlying off-policy evaluation (OPE) by simulating trajectories similarly to Monte Carlo methods. Compared to other OPE methods, our algorithm does not require optimization, can be efficiently implemented via tree-based nearest neighbor search and parallelization and does not explicitly assume a parametric model for the environment's dynamics. These properties make the proposed resampling algorithm particularly useful for stochastic control environments. We prove that our method is statistically consistent in estimating the performance of a policy in the OPE setting under weak assumptions and for data sets containing entire episodes rather than independent transitions. To establish the consistency, we generalize Stone's Theorem, a well-known result in nonparametric statistics on local averaging, to include episodic data and the counterfactual estimation underlying OPE. Numerical experiments demonstrate the effectiveness of the algorithm in a variety of stochastic control settings including a linear quadratic regulator, trade execution in limit order books and online stochastic bin packing.

Quantification learning deals with the task of estimating the target label distribution under label shift. In this paper, we first present a unifying framework, distribution feature matching (DFM), that recovers as particular instances various estimators introduced in previous literature. We derive a general performance bound for DFM procedures, improving in several key aspects upon previous bounds derived in particular cases. We then extend this analysis to study robustness of DFM procedures in the misspecified setting under departure from the exact label shift hypothesis, in particular in the case of contamination of the target by an unknown distribution. These theoretical findings are confirmed by a detailed numerical study on simulated and real-world datasets. We also introduce an efficient, scalable and robust version of kernel-based DFM using the Random Fourier Feature principle.

Distributional robustness is a promising framework for training deep learning models that are less vulnerable to adversarial examples and data distribution shifts. Previous works have mainly focused on exploiting distributional robustness in data space. In this work, we explore an optimal transport-based distributional robustness framework on model spaces. Specifically, we examine a model distribution in a Wasserstein ball of a given center model distribution that maximizes the loss. We have developed theories that allow us to learn the optimal robust center model distribution. Interestingly, through our developed theories, we can flexibly incorporate the concept of sharpness awareness into training a single model, ensemble models, and Bayesian Neural Networks by considering specific forms of the center model distribution, such as a Dirac delta distribution over a single model, a uniform distribution over several models, and a general Bayesian Neural Network. Furthermore, we demonstrate that sharpness-aware minimization (SAM) is a specific case of our framework when using a Dirac delta distribution over a single model, while our framework can be viewed as a probabilistic extension of SAM. We conduct extensive experiments to demonstrate the usefulness of our framework in the aforementioned settings, and the results show remarkable improvements in our approaches to the baselines.

Bivariate count models having one marginal and the other conditionals being of the Poissons form are called pseudo-Poisson distributions. Such models have simple exible dependence structures, possess fast computation algorithms and generate a sufficiently large number of parametric families. It has been strongly argued that the pseudo-Poisson model will be the first choice to consider in modelling bivariate over-dispersed data with positive correlation and having one of the marginal equi-dispersed. Yet, before we start fitting, it is necessary to test whether the given data is compatible with the assumed pseudo-Poisson model. Hence, in the present note we derive and propose a few goodness-of-fit tests for the bivariate pseudo-Poisson distribution. Also we emphasize two tests, a lesser known test based on the supremes of the absolute difference between the estimated probability generating function and its empirical counterpart. A new test has been proposed based on the difference between the estimated bivariate Fisher dispersion index and its empirical indices. However, we also consider the potential of applying the bivariate tests that depend on the generating function (like the Kocherlakota and Kocherlakota and Mu~noz and Gamero tests) and the univariate goodness-of-fit tests (like the Chi-square test) to the pseudo-Poisson data. However, for each of the tests considered we analyse finite, large and asymptotic properties. Nevertheless, we compare the power (bivariate classical Poisson and Com-Max bivariate Poisson as alternatives) of each of the tests suggested and also include examples of application to real-life data. In a nutshell we are developing an R package which includes a test for compatibility of the data with the bivariate pseudo-Poisson model.

Dynamic Linear Models (DLMs) are commonly employed for time series analysis due to their versatile structure, simple recursive updating, ability to handle missing data, and probabilistic forecasting. However, the options for count time series are limited: Gaussian DLMs require continuous data, while Poisson-based alternatives often lack sufficient modeling flexibility. We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM. The warping function has two components: a (nonparametric) transformation operator that provides distributional flexibility and a rounding operator that ensures the correct support for the discrete data-generating process. We develop conjugate inference for the warped DLM, which enables analytic and recursive updates for the state space filtering and smoothing distributions. We leverage these results to produce customized and efficient algorithms for inference and forecasting, including Monte Carlo simulation for offline analysis and an optimal particle filter for online inference. This framework unifies and extends a variety of discrete time series models and is valid for natural counts, rounded values, and multivariate observations. Simulation studies illustrate the excellent forecasting capabilities of the warped DLM. The proposed approach is applied to a multivariate time series of daily overdose counts and demonstrates both modeling and computational successes.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

北京阿比特科技有限公司