亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give algorithms for sampling several structured logconcave families to high accuracy. We further develop a reduction framework, inspired by proximal point methods in convex optimization, which bootstraps samplers for regularized densities to improve dependences on problem conditioning. A key ingredient in our framework is the notion of a "restricted Gaussian oracle" (RGO) for $g: \mathbb{R}^d \rightarrow \mathbb{R}$, which is a sampler for distributions whose negative log-likelihood sums a quadratic and $g$. By combining our reduction framework with our new samplers, we obtain the following bounds for sampling structured distributions to total variation distance $\epsilon$. For composite densities $\exp(-f(x) - g(x))$, where $f$ has condition number $\kappa$ and convex (but possibly non-smooth) $g$ admits an RGO, we obtain a mixing time of $O(\kappa d \log^3\frac{\kappa d}{\epsilon})$, matching the state-of-the-art non-composite bound; no composite samplers with better mixing than general-purpose logconcave samplers were previously known. For logconcave finite sums $\exp(-F(x))$, where $F(x) = \frac{1}{n}\sum_{i \in [n]} f_i(x)$ has condition number $\kappa$, we give a sampler querying $\widetilde{O}(n + \kappa\max(d, \sqrt{nd}))$ gradient oracles to $\{f_i\}_{i \in [n]}$; no high-accuracy samplers with nontrivial gradient query complexity were previously known. For densities with condition number $\kappa$, we give an algorithm obtaining mixing time $O(\kappa d \log^2\frac{\kappa d}{\epsilon})$, improving the prior state-of-the-art by a logarithmic factor with a significantly simpler analysis; we also show a zeroth-order algorithm attains the same query complexity.

相關內容

The logistic and probit link functions are the most common choices for regression models with a binary response. However, these choices are not robust to the presence of outliers/unexpected observations. The robit link function, which is equal to the inverse CDF of the Student's $t$-distribution, provides a robust alternative to the probit and logistic link functions. A multivariate normal prior for the regression coefficients is the standard choice for Bayesian inference in robit regression models. The resulting posterior density is intractable and a Data Augmentation (DA) Markov chain is used to generate approximate samples from the desired posterior distribution. Establishing geometric ergodicity for this DA Markov chain is important as it provides theoretical guarantees for asymptotic validity of MCMC standard errors for desired posterior expectations/quantiles. Previous work [Roy(2012)] established geometric ergodicity of this robit DA Markov chain assuming (i) the sample size $n$ dominates the number of predictors $p$, and (ii) an additional constraint which requires the sample size to be bounded above by a fixed constant which depends on the design matrix $X$. In particular, modern high-dimensional settings where $n < p$ are not considered. In this work, we show that the robit DA Markov chain is trace-class (i.e., the eigenvalues of the corresponding Markov operator are summable) for arbitrary choices of the sample size $n$, the number of predictors $p$, the design matrix $X$, and the prior mean and variance parameters. The trace-class property implies geometric ergodicity. Moreover, this property allows us to conclude that the sandwich robit chain (obtained by inserting an inexpensive extra step in between the two steps of the DA chain) is strictly better than the robit DA chain in an appropriate sense.

Discrepancy measures between probability distributions, often termed statistical distances, are ubiquitous in probability theory, statistics and machine learning. To combat the curse of dimensionality when estimating these distances from data, recent work has proposed smoothing out local irregularities in the measured distributions via convolution with a Gaussian kernel. Motivated by the scalability of this framework to high dimensions, we investigate the structural and statistical behavior of the Gaussian-smoothed $p$-Wasserstein distance $\mathsf{W}_p^{(\sigma)}$, for arbitrary $p\geq 1$. After establishing basic metric and topological properties of $\mathsf{W}_p^{(\sigma)}$, we explore the asymptotic statistical behavior of $\mathsf{W}_p^{(\sigma)}(\hat{\mu}_n,\mu)$, where $\hat{\mu}_n$ is the empirical distribution of $n$ independent observations from $\mu$. We prove that $\mathsf{W}_p^{(\sigma)}$ enjoys a parametric empirical convergence rate of $n^{-1/2}$, which contrasts the $n^{-1/d}$ rate for unsmoothed $\mathsf{W}_p$ when $d \geq 3$. Our proof relies on controlling $\mathsf{W}_p^{(\sigma)}$ by a $p$th-order smooth Sobolev distance $\mathsf{d}_p^{(\sigma)}$ and deriving the limit distribution of $\sqrt{n}\,\mathsf{d}_p^{(\sigma)}(\hat{\mu}_n,\mu)$, for all dimensions $d$. As applications, we provide asymptotic guarantees for two-sample testing and minimum distance estimation using $\mathsf{W}_p^{(\sigma)}$, with experiments for $p=2$ using a maximum mean discrepancy formulation of $\mathsf{d}_2^{(\sigma)}$.

Recent advances at the intersection of dense large graph limits and mean field games have begun to enable the scalable analysis of a broad class of dynamical sequential games with large numbers of agents. So far, results have been largely limited to graphon mean field systems with continuous-time diffusive or jump dynamics, typically without control and with little focus on computational methods. We propose a novel discrete-time formulation for graphon mean field games as the limit of non-linear dense graph Markov games with weak interaction. On the theoretical side, we give extensive and rigorous existence and approximation properties of the graphon mean field solution in sufficiently large systems. On the practical side, we provide general learning schemes for graphon mean field equilibria by either introducing agent equivalence classes or reformulating the graphon mean field system as a classical mean field system. By repeatedly finding a regularized optimal control solution and its generated mean field, we successfully obtain plausible approximate Nash equilibria in otherwise infeasible large dense graph games with many agents. Empirically, we are able to demonstrate on a number of examples that the finite-agent behavior comes increasingly close to the mean field behavior for our computed equilibria as the graph or system size grows, verifying our theory. More generally, we successfully apply policy gradient reinforcement learning in conjunction with sequential Monte Carlo methods.

We study the problem of estimating the density $f(\boldsymbol x)$ of a random vector ${\boldsymbol X}$ in $\mathbb R^d$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. An optimal spanning tree minimizes the Kullback-Leibler divergence between $f$ and $f_{T}$. From i.i.d. data we identify an optimal tree $T^*$ and efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz $f$ with bounded support, $\mathbb E \left\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\right\}=O\big(n^{-1/4}\big)$, a dimension-free rate.

The min-entropy is a widely used metric to quantify the randomness of generated random numbers, which measures the difficulty of guessing the most likely output. It is difficult to accurately estimate the min-entropy of a non-independent and identically distributed (non-IID) source. Hence, NIST Special Publication (SP) 800-90B adopts ten different min-entropy estimators and then conservatively selects the minimum value among ten min-entropy estimates. Among these estimators, the longest repeated substring (LRS) estimator estimates the collision entropy instead of the min-entropy by counting the number of repeated substrings. Since the collision entropy is an upper bound on the min-entropy, the LRS estimator inherently provides \emph{overestimated} outputs. In this paper, we propose two techniques to estimate the min-entropy of a non-IID source accurately. The first technique resolves the overestimation problem by translating the collision entropy into the min-entropy. Next, we generalize the LRS estimator by adopting the general R{\'{e}}nyi entropy instead of the collision entropy (i.e., R{\'{e}}nyi entropy of order two). We show that adopting a higher order can reduce the variance of min-entropy estimates. By integrating these techniques, we propose a generalized LRS estimator that effectively resolves the overestimation problem and provides stable min-entropy estimates. Theoretical analysis and empirical results support that the proposed generalized LRS estimator improves the estimation accuracy significantly, which makes it an appealing alternative to the LRS estimator.

This paper proposes an algorithm to generate random numbers from any member of the truncated multivariate elliptical family of distributions with a strictly decreasing density generating function. Based on Neal (2003) and Ho et al. (2012), we construct an efficient sampling method by means of a slice sampling algorithm with Gibbs sampler steps. We also provide a faster approach to approximate the first and the second moment for the truncated multivariate elliptical distributions where Monte Carlo integration is used for the truncated partition, and explicit expressions for the non-truncated part (Galarza et al., 2020). Examples and an application to environmental spatial data illustrate its usefulness. Methods are available for free in the new R library elliptical.

Discretization of continuous-time diffusion processes is a widely recognized method for sampling. However, it seems to be a considerable restriction when the potentials are often required to be smooth (gradient Lipschitz). This paper studies the problem of sampling through Euler discretization, where the potential function is assumed to be a mixture of weakly smooth distributions and satisfies weakly dissipative. We establish the convergence in Kullback-Leibler (KL) divergence with the number of iterations to reach $\epsilon$-neighborhood of a target distribution in only polynomial dependence on the dimension. We relax the degenerated convex at infinity conditions of \citet{erdogdu2020convergence} and prove convergence guarantees under Poincar\'{e} inequality or non-strongly convex outside the ball. In addition, we also provide convergence in $L_{\beta}$-Wasserstein metric for the smoothing potential.

While learning the graphical structure of Bayesian networks from observational data is key to describing and helping understand data generating processes in complex applications, the task poses considerable challenges due to its computational complexity. The directed acyclic graph (DAG) representing a Bayesian network model is generally not identifiable from observational data, and a variety of methods exist to estimate its equivalence class instead. Under certain assumptions, the popular PC algorithm can consistently recover the correct equivalence class by testing for conditional independence (CI), starting from marginal independence relationships and progressively expanding the conditioning set. Here, we propose the dual PC algorithm, a novel scheme to carry out the CI tests within the PC algorithm by leveraging the inverse relationship between covariance and precision matrices. Notably, the elements of the precision matrix coincide with partial correlations for Gaussian data. Our algorithm then exploits block matrix inversions on the covariance and precision matrices to simultaneously perform tests on partial correlations of complementary (or dual) conditioning sets. The multiple CI tests of the dual PC algorithm, therefore, proceed by first considering marginal and full-order CI relationships and progressively moving to central-order ones. Simulation studies indicate that the dual PC algorithm outperforms the classical PC algorithm both in terms of run time and in recovering the underlying network structure.

This paper studies the online correlated selection (OCS) problem. It was introduced by Fahrbach, Huang, Tao, and Zadimoghaddam (2020) to obtain the first edge-weighted online bipartite matching algorithm that breaks the $0.5$ barrier. Suppose that we receive a pair of elements in each round and immediately select one of them. Can we select with negative correlation to be more effective than independent random selections? Our contributions are threefold. For semi-OCS, which considers the probability that an element remains unselected after appearing in $k$ rounds, we give an optimal algorithm that minimizes this probability for all $k$. It leads to $0.536$-competitive unweighted and vertex-weighted online bipartite matching algorithms that randomize over only two options in each round, improving the $0.508$-competitive ratio by Fahrbach et al. (2020). Further, we develop the first multi-way semi-OCS that allows an arbitrary number of elements with arbitrary masses in each round. As an application, it rounds the Balance algorithm in unweighted and vertex-weighted online bipartite matching and is $0.593$-competitive. Finally, we study OCS, which further considers the probability that an element is unselected in an arbitrary subset of rounds. We prove that the optimal "level of negative correlation" is between $0.167$ and $0.25$, improving the previous bounds of $0.109$ and $1$ by Fahrbach et al. (2020). Our OCS gives a $0.519$-competitive edge-weighted online bipartite matching algorithm, improving the previous $0.508$-competitive ratio by Fahrbach et al. (2020).

Model-based methods are popular in derivative-free optimization (DFO). In most of them, a single model function is built to approximate the objective function. This is generally based on the assumption that the objective function is one blackbox. However, some real-life and theoretical problems show that the objective function may consist of several blackboxes. In those problems, the information provided by each blackbox may not be equal. In this situation, one could build multiple sub-models that are then combined to become a final model. In this paper, we analyze the relation between the accuracy of those sub-models and the model constructed through their operations. We develop a broad framework that can be used as a theoretical tool in model error analysis and future research in DFO algorithms design.

北京阿比特科技有限公司