While the complexity of translating future linear temporal logic (LTL) into automata on infinite words is well-understood, the size increase involved in turning automata back to LTL is not. In particular, there is no known elementary bound on the complexity of translating deterministic $\omega$-regular automata to LTL. Our first contribution consists of tight bounds for LTL over a unary alphabet: alternating, nondeterministic and deterministic automata can be exactly exponentially, quadratically and linearly more succinct, respectively, than any equivalent LTL formula. Our main contribution consists of a translation of general counter-free deterministic $\omega$-regular automata into LTL formulas of double exponential temporal-nesting depth and triple exponential length, using an intermediate Krohn-Rhodes cascade decomposition of the automaton. To our knowledge, this is the first elementary bound on this translation. Furthermore, our translation preserves the acceptance condition of the automaton in the sense that it turns a looping, weak, B\"uchi, coB\"uchi or Muller automaton into a formula that belongs to the matching class of the syntactic future hierarchy. In particular, it can be used to translate an LTL formula recognising a safety language to a formula belonging to the safety fragment of LTL (over both finite and infinite words).
Transformers have achieved state-of-the-art results across multiple NLP tasks. However, the self-attention mechanism complexity scales quadratically with the sequence length, creating an obstacle for tasks involving long sequences, like in the speech domain. In this paper, we discuss the usefulness of self-attention for Direct Speech Translation. First, we analyze the layer-wise token contributions in the self-attention of the encoder, unveiling local diagonal patterns. To prove that some attention weights are avoidable, we propose to substitute the standard self-attention with a local efficient one, setting the amount of context used based on the results of the analysis. With this approach, our model matches the baseline performance, and improves the efficiency by skipping the computation of those weights that standard attention discards.
Software model checking is a verification technique which is widely used for checking temporal properties of software systems. Even though it is a property verification technique, its common usage in practice is in "bug finding", that is, finding violations of temporal properties. Motivated by this observation and leveraging the recent progress in fuzzing, we build a greybox fuzzing framework to find violations of Linear-time Temporal Logic (LTL) properties. Our framework takes as input a sequential program written in C/C++, and an LTL property. It finds violations, or counterexample traces, of the LTL property in stateful software systems; however, it does not achieve verification. Our work substantially extends directed greybox fuzzing to witness arbitrarily complex event orderings. We note that existing directed greybox fuzzing approaches are limited to witnessing reaching a location or witnessing simple event orderings like use-after-free. At the same time, compared to model checkers, our approach finds the counterexamples faster, thereby finding more counterexamples within a given time budget. Our LTL-Fuzzer tool, built on top of the AFL fuzzer, is shown to be effective in detecting bugs in well-known protocol implementations, such as OpenSSL and Telnet. We use LTL-Fuzzer to reproduce known vulnerabilities (CVEs), to find 15 zero-day bugs by checking properties extracted from RFCs (for which 12 CVEs have been assigned), and to find violations of both safety as well as liveness properties in real-world protocol implementations. Our work represents a practical advance over software model checkers -- while simultaneously representing a conceptual advance over existing greybox fuzzers. Our work thus provides a starting point for understanding the unexplored synergies between software model checking and greybox fuzzing.
Dynamic topological logic ($\mathbf{DTL}$) is a trimodal logic designed for reasoning about dynamic topological systems. It was shown by Fern\'andez-Duque that the natural set of axioms for $\mathbf{DTL}$ is incomplete, but he provided a complete axiomatisation in an extended language. In this paper, we consider dynamic topological logic over scattered spaces, which are topological spaces where every nonempty subspace has an isolated point. Scattered spaces appear in the context of computational logic as they provide semantics for provability and enjoy definable fixed points. We exhibit the first sound and complete dynamic topological logic in the original trimodal language. In particular, we show that the version of $\mathbf{DTL}$ based on the class of scattered spaces is finitely axiomatisable over the original language, and that the natural axiomatisation is sound and complete.
We provide a decision theoretic analysis of bandit experiments. The setting corresponds to a dynamic programming problem, but solving this directly is typically infeasible. Working within the framework of diffusion asymptotics, we define suitable notions of asymptotic Bayes and minimax risk for bandit experiments. For normally distributed rewards, the minimal Bayes risk can be characterized as the solution to a nonlinear second-order partial differential equation (PDE). Using a limit of experiments approach, we show that this PDE characterization also holds asymptotically under both parametric and non-parametric distribution of the rewards. The approach further describes the state variables it is asymptotically sufficient to restrict attention to, and therefore suggests a practical strategy for dimension reduction. The upshot is that we can approximate the dynamic programming problem defining the bandit experiment with a PDE which can be efficiently solved using sparse matrix routines. We derive the optimal Bayes and minimax policies from the numerical solutions to these equations. The proposed policies substantially dominate existing methods such as Thompson sampling. The framework also allows for substantial generalizations to the bandit problem such as time discounting and pure exploration motives.
Influence Maximization (IM), which aims to select a set of users from a social network to maximize the expected number of influenced users, is an evergreen hot research topic. Its research outcomes significantly impact real-world applications such as business marketing. The booming location-based network platforms of the last decade appeal to the researchers embedding the location information into traditional IM research. In this survey, we provide a comprehensive review of the existing location-driven IM studies from the perspective of the following key aspects: (1) a review of the application scenarios of these works, (2) the diffusion models to evaluate the influence propagation, and (3) a comprehensive study of the approaches to deal with the location-driven IM problems together with a particular focus on the accelerating techniques. In the end, we draw prospects into the research directions in future IM research.
Many forms of dependence manifest themselves over time, with behavior of variables in dynamical systems as a paradigmatic example. This paper studies temporal dependence in dynamical systems from a logical perspective, by extending a minimal modal base logic of static functional dependencies. We define a logic for dynamical systems with single time steps, provide a complete axiomatic proof calculus, and show the decidability of the satisfiability problem for a substantial fragment. The system comes in two guises: modal and first-order, that naturally complement each other. Next, we consider a timed semantics for our logic, as an intermediate between state spaces and temporal universes for the unfoldings of a dynamical system. We prove completeness and decidability by combining techniques from dynamic-epistemic logic and modal logic of functional dependencies with complex terms for objects. Also, we extend these results to the timed logic with functional symbols and term identity. Finally, we conclude with a brief outlook on how the system proposed here connects with richer temporal logics of system behavior, and with dynamic topological logic.
Recently, the Natural Language Inference (NLI) task has been studied for semi-structured tables that do not have a strict format. Although neural approaches have achieved high performance in various types of NLI, including NLI between semi-structured tables and texts, they still have difficulty in performing a numerical type of inference, such as counting. To handle a numerical type of inference, we propose a logical inference system for reasoning between semi-structured tables and texts. We use logical representations as meaning representations for tables and texts and use model checking to handle a numerical type of inference between texts and tables. To evaluate the extent to which our system can perform inference with numerical comparatives, we make an evaluation protocol that focuses on numerical understanding between semi-structured tables and texts in English. We show that our system can more robustly perform inference between tables and texts that requires numerical understanding compared with current neural approaches.
Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.
In this paper, we study the problem of exploring an unknown Region Of Interest (ROI) with a team of aerial robots. The size and shape of the ROI are unknown to the robots. The objective is to find a tour for each robot such that each point in the ROI must be visible from the field-of-view of some robot along its tour. In conventional exploration using ground robots, the ROI boundary is typically also as an obstacle and robots are naturally constrained to the interior of this ROI. Instead, we study the case where aerial robots are not restricted to flying inside the ROI (and can fly over the boundary of the ROI). We propose a recursive depth-first search-based algorithm that yields a constant competitive ratio for the exploration problem. Our analysis also extends to the case where the ROI is translating, \eg, in the case of marine plumes. In the simpler version of the problem where the ROI is modeled as a 2D grid, the competitive ratio is $\frac{2(S_r+S_p)(R+\lfloor\log{R}\rfloor)}{(S_r-S_p)(1+\lfloor\log{R}\rfloor)}$ where $R$ is the number of robots, and $S_r$ and $S_p$ are the robot speed and the ROI speed, respectively. We also consider a more realistic scenario where the ROI shape is not restricted to grid cells but an arbitrary shape. We show our algorithm has $\frac{2(S_r+S_p)(18R+\lfloor\log{R}\rfloor)}{(S_r-S_p)(1+\lfloor\log{R}\rfloor)}$ competitive ratio under some conditions. We empirically verify our algorithm using simulations as well as a proof-of-concept experiment mapping a 2D ROI using an aerial robot with a downwards-facing camera.
We recall some of the history of the information-theoretic approach to deriving core results in probability theory and indicate parts of the recent resurgence of interest in this area with current progress along several interesting directions. Then we give a new information-theoretic proof of a finite version of de Finetti's classical representation theorem for finite-valued random variables. We derive an upper bound on the relative entropy between the distribution of the first $k$ in a sequence of $n$ exchangeable random variables, and an appropriate mixture over product distributions. The mixing measure is characterised as the law of the empirical measure of the original sequence, and de Finetti's result is recovered as a corollary. The proof is nicely motivated by the Gibbs conditioning principle in connection with statistical mechanics, and it follows along an appealing sequence of steps. The technical estimates required for these steps are obtained via the use of a collection of combinatorial tools known within information theory as `the method of types.'