The paper proposes an efficient trajectory planning and control approach for payload grasping and transportation using an aerial manipulator. The proposed manipulator structure consists of a hook attached to a quadrotor using a 1 DoF revolute joint. To perform payload grasping, transportation, and release, first, time-optimal reference trajectories are designed through specific waypoints to ensure the fast and reliable execution of the tasks. Then, a two-stage motion control approach is developed based on a robust geometric controller for precise and reliable reference tracking and a linear--quadratic payload regulator for rapid setpoint stabilization of the payload swing. The proposed control architecture and design are evaluated in a high-fidelity physical simulator with external disturbances and also in real flight experiments.
Deep neural networks (DNNs) have made remarkable strides in various computer vision tasks, including image classification, segmentation, and object detection. However, recent research has revealed a vulnerability in advanced DNNs when faced with deliberate manipulations of input data, known as adversarial attacks. Moreover, the accuracy of DNNs is heavily influenced by the distribution of the training dataset. Distortions or perturbations in the color space of input images can introduce out-of-distribution data, resulting in misclassification. In this work, we propose a brightness-variation dataset, which incorporates 24 distinct brightness levels for each image within a subset of ImageNet. This dataset enables us to simulate the effects of light and shadow on the images, so as is to investigate the impact of light and shadow on the performance of DNNs. In our study, we conduct experiments using several state-of-the-art DNN architectures on the aforementioned dataset. Through our analysis, we discover a noteworthy positive correlation between the brightness levels and the loss of accuracy in DNNs. Furthermore, we assess the effectiveness of recently proposed robust training techniques and strategies, including AugMix, Revisit, and Free Normalizer, using the ResNet50 architecture on our brightness-variation dataset. Our experimental results demonstrate that these techniques can enhance the robustness of DNNs against brightness variation, leading to improved performance when dealing with images exhibiting varying brightness levels.
Tasks for autonomous robotic systems commonly require stabilization to a desired region while maintaining safety specifications. However, solving this multi-objective problem is challenging when the dynamics are nonlinear and high-dimensional, as traditional methods do not scale well and are often limited to specific problem structures. To address this issue, we propose a novel approach to solve the stabilize-avoid problem via the solution of an infinite-horizon constrained optimal control problem (OCP). We transform the constrained OCP into epigraph form and obtain a two-stage optimization problem that optimizes over the policy in the inner problem and over an auxiliary variable in the outer problem. We then propose a new method for this formulation that combines an on-policy deep reinforcement learning algorithm with neural network regression. Our method yields better stability during training, avoids instabilities caused by saddle-point finding, and is not restricted to specific requirements on the problem structure compared to more traditional methods. We validate our approach on different benchmark tasks, ranging from low-dimensional toy examples to an F16 fighter jet with a 17-dimensional state space. Simulation results show that our approach consistently yields controllers that match or exceed the safety of existing methods while providing ten-fold increases in stability performance from larger regions of attraction.
Hierarchical Imitation Learning (HIL) has been proposed to recover highly-complex behaviors in long-horizon tasks from expert demonstrations by modeling the task hierarchy with the option framework. Existing methods either overlook the causal relationship between the subtask and its corresponding policy or cannot learn the policy in an end-to-end fashion, which leads to suboptimality. In this work, we develop a novel HIL algorithm based on Adversarial Inverse Reinforcement Learning and adapt it with the Expectation-Maximization algorithm in order to directly recover a hierarchical policy from the unannotated demonstrations. Further, we introduce a directed information term to the objective function to enhance the causality and propose a Variational Autoencoder framework for learning with our objectives in an end-to-end fashion. Theoretical justifications and evaluations on challenging robotic control tasks are provided to show the superiority of our algorithm. The codes are available at //github.com/LucasCJYSDL/HierAIRL.
Recent research efforts have yielded significant advancements in manipulating objects under homogeneous settings where the robot is required to either manipulate rigid or deformable (soft) objects. However, the manipulation under heterogeneous setups that involve both deformable and rigid objects remains an unexplored area of research. Such setups are common in various scenarios that involve the transportation of heavy objects via ropes, e.g., on factory floors, at disaster sites, and in forestry. To address this challenge, we introduce DeRi-Bot, the first framework that enables the collaborative manipulation of rigid objects with deformable objects. Our framework comprises an Action Prediction Network (APN) and a Configuration Prediction Network (CPN) to model the complex pattern and stochasticity of soft-rigid body systems. We demonstrate the effectiveness of DeRi-Bot in moving rigid objects to a target position with ropes connected to robotic arms. Furthermore, DeRi-Bot is a distributive method that can accommodate an arbitrary number of robots or human partners without reconfiguration or retraining. We evaluate our framework in both simulated and real-world environments and show that it achieves promising results with strong generalization across different types of objects and multi-agent settings, including human-robot collaboration.
Multi-agent systems can be extremely efficient when working concurrently and collaboratively, e.g., for transportation, maintenance, search and rescue. Coordination of such teams often involves two aspects: (i) selecting appropriate sub-teams for different tasks; (ii) designing collaborative control strategies to execute these tasks. The former aspect can be combinatorial w.r.t. the team size, while the latter requires optimization over joint state-spaces under geometric and dynamic constraints. Existing work often tackles one aspect by assuming the other is given, while ignoring their close dependency. This work formulates such problems as combinatorial-hybrid optimizations (CHO), where both the discrete modes of collaboration and the continuous control parameters are optimized simultaneously and iteratively. The proposed framework consists of two interleaved layers: the dynamic formation of task coalitions and the hybrid optimization of collaborative behaviors. Overall feasibility and costs of different coalitions performing various tasks are approximated at different granularities to improve the computational efficiency. At last, a Nash-stable strategy for both task assignment and execution is derived with provable guarantee on the feasibility and quality. Two non-trivial applications of collaborative transportation and dynamic capture are studied against several baselines.
This paper proposes an integrated sensing, navigation, and communication (ISNC) framework for safeguarding unmanned aerial vehicle (UAV)-enabled wireless networks against a mobile eavesdropping UAV (E-UAV). To cope with the mobility of the E-UAV, the proposed framework advocates the dual use of artificial noise transmitted by the information UAV (I-UAV) for simultaneous jamming and sensing to facilitate navigation and secure communication. In particular, the I-UAV communicates with legitimate downlink ground users, while avoiding potential information leakage by emitting jamming signals, and estimates the state of the E-UAV with an extended Kalman filter based on the backscattered jamming signals. Exploiting the estimated state of the E-UAV in the previous time slot, the I-UAV determines its flight planning strategy, predicts the wiretap channel, and designs its communication resource allocation policy for the next time slot. To circumvent the severe coupling between these three tasks, a divide-and-conquer approach is adopted. The online navigation design has the objective to minimize the distance between the I-UAV and a pre-defined destination point considering kinematic and geometric constraints. Subsequently, given the predicted wiretap channel, the robust resource allocation design is formulated as an optimization problem to achieve the optimal trade-off between sensing and communication in the next time slot, while taking into account the wiretap channel prediction error and the quality-of-service (QoS) requirements of secure communication. Simulation results demonstrate the superior performance of the proposed design compared with baseline schemes and validate the benefits of integrating sensing and navigation into secure UAV communication systems.
The Stable Diffusion model is a prominent text-to-image generation model that relies on a text prompt as its input, which is encoded using the Contrastive Language-Image Pre-Training (CLIP). However, text prompts have limitations when it comes to incorporating implicit information from reference images. Existing methods have attempted to address this limitation by employing expensive training procedures involving millions of training samples for image-to-image generation. In contrast, this paper demonstrates that the CLIP model, as utilized in Stable Diffusion, inherently possesses the ability to instantaneously convert images into text prompts. Such an image-to-prompt conversion can be achieved by utilizing a linear projection matrix that is calculated in a closed form. Moreover, the paper showcases that this capability can be further enhanced by either utilizing a small amount of similar-domain training data (approximately 100 images) or incorporating several online training steps (around 30 iterations) on the reference images. By leveraging these approaches, the proposed method offers a simple and flexible solution to bridge the gap between images and text prompts. This methodology can be applied to various tasks such as image variation and image editing, facilitating more effective and seamless interaction between images and textual prompts.
We propose enhancing trajectory optimization methods through the incorporation of two key ideas: variable-grasp pose sampling and trajectory commitment. Our iterative approach samples multiple grasp poses, increasing the likelihood of finding a solution while gradually narrowing the optimization horizon towards the goal region for improved computational efficiency. We conduct experiments comparing our approach with sampling-based planning and fixed-goal optimization. In simulated experiments featuring 4 different task scenes, our approach consistently outperforms baselines by generating lower-cost trajectories and achieving higher success rates in challenging constrained and cluttered environments, at the trade-off of longer computation times. Real-world experiments further validate the superiority of our approach in generating lower-cost trajectories and exhibiting enhanced robustness. While we acknowledge the limitations of our experimental design, our proposed approach holds significant potential for enhancing trajectory optimization methods and offers a promising solution for achieving consistent and reliable robotic manipulation.
Safety is critical in robotic tasks. Energy function based methods have been introduced to address the problem. To ensure safety in the presence of control limits, we need to design an energy function that results in persistently feasible safe control at all system states. However, designing such an energy function for high-dimensional nonlinear systems remains challenging. Considering the fact that there are redundant dynamics in high dimensional systems with respect to the safety specifications, this paper proposes a novel approach called abstract safe control. We propose a system abstraction method that enables the design of energy functions on a low-dimensional model. Then we can synthesize the energy function with respect to the low-dimensional model to ensure persistent feasibility. The resulting safe controller can be directly transferred to other systems with the same abstraction, e.g., when a robot arm holds different tools. The proposed approach is demonstrated on a 7-DoF robot arm (14 states) both in simulation and real-world. Our method always finds feasible control and achieves zero safety violations in 500 trials on 5 different systems.
In this paper analysis is performed on a computational method for thermal radiative transfer (TRT) problems based on the multilevel quasidiffusion (variable Eddington factor) method with the method of long characteristics (ray tracing) for the Boltzmann transport equation (BTE). The method is formulated with a multilevel set of moment equations of the BTE which are coupled to the material energy balance (MEB). The moment equations are exactly closed via the Eddington tensor defined by the BTE solution. Two discrete spatial meshes are defined: a material grid on which the MEB and low-order moment equations are discretized, and a grid of characteristics for solving the BTE. Numerical testing of the method is completed on the well-known Fleck-Cummings test problem which models a supersonic radiation wave propagation. Mesh refinement studies are performed on each of the two spatial grids independently, holding one mesh width constant while refining the other. We also present the data on convergence of iterations.