亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper contains a recipe for deriving new PAC-Bayes generalisation bounds based on the $(f, \Gamma)$-divergence, and, in addition, presents PAC-Bayes generalisation bounds where we interpolate between a series of probability divergences (including but not limited to KL, Wasserstein, and total variation), making the best out of many worlds depending on the posterior distributions properties. We explore the tightness of these bounds and connect them to earlier results from statistical learning, which are specific cases. We also instantiate our bounds as training objectives, yielding non-trivial guarantees and practical performances.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

We define and investigate the Fr\'{e}chet edit distance problem. Given two polygonal curves $\pi$ and $\sigma$ and a threshhold value $\delta>0$, we seek the minimum number of edits to $\sigma$ such that the Fr\'{e}chet distance between the edited $\sigma$ and $\pi$ is at most $\delta$. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fr\'{e}chet edit distance variants, as well as hardness results for weak Fr\'{e}chet edit distance variants.

We present an algorithm to solve the dispersive depth-averaged Serre-Green-Naghdi (SGN) equations using patch-based adaptive mesh refinement. These equations require adding additional higher derivative terms to the nonlinear shallow water equations. This has been implemented as a new component of the open source GeoClaw software that is widely used for modeling tsunamis, storm surge, and related hazards, improving its accuracy on shorter wavelength phenomena. We use a formulation that requires solving an elliptic system of equations at each time step, making the method implicit. The adaptive algorithm allows different time steps on different refinement levels, and solves the implicit equations level by level. Computational examples are presented to illustrate the stability and accuracy on a radially symmetric test case and two realistic tsunami modeling problems, including a hypothetical asteroid impact creating a short wavelength tsunami for which dispersive terms are necessary.

Learned Index Structures (LIS) view a sorted index as a model that learns the data distribution, takes a data element key as input, and outputs the predicted position of the key. The original LIS can only handle lookup operations with no support for updates, rendering it impractical to use for typical workloads. To address this limitation, recent studies have focused on designing efficient dynamic learned indexes. ALEX, as the pioneering dynamic learned index structures, enables dynamism by incorporating a series of design choices, including adaptive key space partitioning, dynamic model retraining, and sophisticated engineering and policies that prioritize read/write performance. While these design choices offer improved average-case performance, the emphasis on flexibility and performance increases the attack surface by allowing adversarial behaviors that maximize ALEX's memory space and time complexity in worst-case scenarios. In this work, we present the first systematic investigation of algorithmic complexity attacks (ACAs) targeting the worst-case scenarios of ALEX. We introduce new ACAs that fall into two categories, space ACAs and time ACAs, which target the memory space and time complexity, respectively. First, our space ACA on data nodes exploits ALEX's gapped array layout and uses Multiple-Choice Knapsack (MCK) to generate an optimal adversarial insertion plan for maximizing the memory consumption at the data node level. Second, our space ACA on internal nodes exploits ALEX's catastrophic cost mitigation mechanism, causing an out-of-memory error with only a few hundred adversarial insertions. Third, our time ACA generates pathological insertions to increase the disparity between the actual key distribution and the linear models of data nodes, deteriorating the runtime performance by up to 1,641X compared to ALEX operating under legitimate workloads.

We study the fundamental problem of transfer learning where a learning algorithm collects data from some source distribution $P$ but needs to perform well with respect to a different target distribution $Q$. A standard change of measure argument implies that transfer learning happens when the density ratio $dQ/dP$ is bounded. Yet, prior thought-provoking works by Kpotufe and Martinet (COLT, 2018) and Hanneke and Kpotufe (NeurIPS, 2019) demonstrate cases where the ratio $dQ/dP$ is unbounded, but transfer learning is possible. In this work, we focus on transfer learning over the class of low-degree polynomial estimators. Our main result is a general transfer inequality over the domain $\mathbb{R}^n$, proving that non-trivial transfer learning for low-degree polynomials is possible under very mild assumptions, going well beyond the classical assumption that $dQ/dP$ is bounded. For instance, it always applies if $Q$ is a log-concave measure and the inverse ratio $dP/dQ$ is bounded. To demonstrate the applicability of our inequality, we obtain new results in the settings of: (1) the classical truncated regression setting, where $dQ/dP$ equals infinity, and (2) the more recent out-of-distribution generalization setting for in-context learning linear functions with transformers. We also provide a discrete analogue of our transfer inequality on the Boolean Hypercube $\{-1,1\}^n$, and study its connections with the recent problem of Generalization on the Unseen of Abbe, Bengio, Lotfi and Rizk (ICML, 2023). Our main conceptual contribution is that the maximum influence of the error of the estimator $\widehat{f}-f^*$ under $Q$, $\mathrm{I}_{\max}(\widehat{f}-f^*)$, acts as a sufficient condition for transferability; when $\mathrm{I}_{\max}(\widehat{f}-f^*)$ is appropriately bounded, transfer is possible over the Boolean domain.

We consider metrical task systems on general metric spaces with $n$ points, and show that any fully randomized algorithm can be turned into a randomized algorithm that uses only $2\log n$ random bits, and achieves the same competitive ratio up to a factor $2$. This provides the first order-optimal barely random algorithms for metrical task systems, i.e. which use a number of random bits that does not depend on the number of requests addressed to the system. We put forward an equivalent view that we call collective metrical task systems where $k$ agents in a metrical task system team up, and suffer the average cost paid by each agent. Our results imply that such team can be $O(\log n^2)$-competitive, as soon as $k\geq n^2$ (in comparison, a single agent is $\Omega(n)$-competitive at best). We discuss implications on various aspects of online decision making such as: distributed systems, transaction costs, and advice complexity, suggesting broad applicability.

Message passing mechanism contributes to the success of GNNs in various applications, but also brings the oversquashing problem. Recent works combat oversquashing by improving the graph spectrums with rewiring techniques, disrupting the structural bias in graphs, and having limited improvement on oversquashing in terms of oversquashing measure. Motivated by unitary RNN, we propose Graph Unitary Message Passing (GUMP) to alleviate oversquashing in GNNs by applying unitary adjacency matrix for message passing. To design GUMP, a transformation is first proposed to make general graphs have unitary adjacency matrix and keep its structural bias. Then, unitary adjacency matrix is obtained with a unitary projection algorithm, which is implemented by utilizing the intrinsic structure of unitary adjacency matrix and allows GUMP to be permutation-equivariant. Experimental results show the effectiveness of GUMP in improving the performance on various graph learning tasks.

Depth-3 circuit lower bounds and $k$-SAT algorithms are intimately related; the state-of-the-art $\Sigma^k_3$-circuit lower bound and the $k$-SAT algorithm are based on the same combinatorial theorem. In this paper we define a problem which reveals new interactions between the two. Define Enum($k$, $t$) problem as: given an $n$-variable $k$-CNF and an initial assignment $\alpha$, output all satisfying assignments at Hamming distance $t$ from $\alpha$, assuming that there are no satisfying assignments of Hamming distance less than $t$ from $\alpha$. Observe that: an upper bound $b(n, k, t)$ on the complexity of Enum($k$, $t$) implies: - Depth-3 circuits: Any $\Sigma^k_3$ circuit computing the Majority function has size at least $\binom{n}{\frac{n}{2}}/b(n, k, \frac{n}{2})$. - $k$-SAT: There exists an algorithm solving $k$-SAT in time $O(\sum_{t = 1}^{n/2}b(n, k, t))$. A simple construction shows that $b(n, k, \frac{n}{2}) \ge 2^{(1 - O(\log(k)/k))n}$. Thus, matching upper bounds would imply a $\Sigma^k_3$-circuit lower bound of $2^{\Omega(\log(k)n/k)}$ and a $k$-SAT upper bound of $2^{(1 - \Omega(\log(k)/k))n}$. The former yields an unrestricted depth-3 lower bound of $2^{\omega(\sqrt{n})}$ solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum($k$, $t$) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum($3$, $\frac{n}{2}$). We show that the expected running time of our algorithm is $1.598^n$, substantially improving on the trivial bound of $3^{n/2} \simeq 1.732^n$. This already improves $\Sigma^3_3$ lower bounds for Majority function to $1.251^n$. The previous bound was $1.154^n$ which follows from the work of H{\aa}stad, Jukna, and Pudl\'ak (Comput. Complex.'95).

This note generalizes factorization for formulas with multiplicities and conjectures that the connection method along with this feature is computationally as powerful as resolution, also seen from a complexity point of view.

2D-based Industrial Anomaly Detection has been widely discussed, however, multimodal industrial anomaly detection based on 3D point clouds and RGB images still has many untouched fields. Existing multimodal industrial anomaly detection methods directly concatenate the multimodal features, which leads to a strong disturbance between features and harms the detection performance. In this paper, we propose Multi-3D-Memory (M3DM), a novel multimodal anomaly detection method with hybrid fusion scheme: firstly, we design an unsupervised feature fusion with patch-wise contrastive learning to encourage the interaction of different modal features; secondly, we use a decision layer fusion with multiple memory banks to avoid loss of information and additional novelty classifiers to make the final decision. We further propose a point feature alignment operation to better align the point cloud and RGB features. Extensive experiments show that our multimodal industrial anomaly detection model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTec-3D AD dataset. Code is available at //github.com/nomewang/M3DM.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

北京阿比特科技有限公司