亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years we have been able to gather large amounts of genomic data at a fast rate, creating situations where the number of variables greatly exceeds the number of observations. In these situations, most models that can handle a moderately high dimension will now become computationally infeasible. Hence, there is a need for a pre-screening of variables to reduce the dimension efficiently and accurately to a more moderate scale. There has been much work to develop such screening procedures for independent outcomes. However, much less work has been done for high-dimensional longitudinal data, in which the observations can no longer be assumed to be independent. In addition, it is of interest to capture possible interactions between the genomic variable and time in many of these longitudinal studies. This calls for the development of new screening procedures for high-dimensional longitudinal data, where the focus is on interactions with time. In this work, we propose a novel conditional screening procedure that ranks variables according to the likelihood value at the maximum likelihood estimates in a semi-marginal linear mixed model, where the genomic variable and its interaction with time are included in the model. This is to our knowledge the first conditional screening approach for clustered data. We prove that this approach enjoys the sure screening property, and assess the finite sample performance of the method through simulations, with a comparison of an already existing screening approach based on generalized estimating equations.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · Neural Networks · 判別器 · Machine Learning · Networks ·
2023 年 8 月 9 日

Neural networks have revolutionized the field of machine learning with increased predictive capability. In addition to improving the predictions of neural networks, there is a simultaneous demand for reliable uncertainty quantification on estimates made by machine learning methods such as neural networks. Bayesian neural networks (BNNs) are an important type of neural network with built-in capability for quantifying uncertainty. This paper discusses aleatoric and epistemic uncertainty in BNNs and how they can be calculated. With an example dataset of images where the goal is to identify the amplitude of an event in the image, it is shown that epistemic uncertainty tends to be lower in images which are well-represented in the training dataset and tends to be high in images which are not well-represented. An algorithm for out-of-distribution (OoD) detection with BNN epistemic uncertainty is introduced along with various experiments demonstrating factors influencing the OoD detection capability in a BNN. The OoD detection capability with epistemic uncertainty is shown to be comparable to the OoD detection in the discriminator network of a generative adversarial network (GAN) with comparable network architecture.

We show how to learn discrete field theories from observational data of fields on a space-time lattice. For this, we train a neural network model of a discrete Lagrangian density such that the discrete Euler--Lagrange equations are consistent with the given training data. We, thus, obtain a structure-preserving machine learning architecture. Lagrangian densities are not uniquely defined by the solutions of a field theory. We introduce a technique to derive regularisers for the training process which optimise numerical regularity of the discrete field theory. Minimisation of the regularisers guarantees that close to the training data the discrete field theory behaves robust and efficient when used in numerical simulations. Further, we show how to identify structurally simple solutions of the underlying continuous field theory such as travelling waves. This is possible even when travelling waves are not present in the training data. This is compared to data-driven model order reduction based approaches, which struggle to identify suitable latent spaces containing structurally simple solutions when these are not present in the training data. Ideas are demonstrated on examples based on the wave equation and the Schr\"odinger equation.

Very distinct strategies can be deployed to recognize and characterize an unknown environment or a shape. A recent and promising approach, especially in robotics, is to reduce the complexity of the exploratory units to a minimum. Here, we show that this frugal strategy can be taken to the extreme by exploiting the power of statistical geometry and introducing new invariant features. We show that an elementary robot devoid of any orientation or observation system, exploring randomly, can access global information about an environment such as the values of the explored area and perimeter. The explored shapes are of arbitrary geometry and may even non-connected. From a dictionary, this most simple robot can thus identify various shapes such as famous monuments and even read a text.

This article presents the openCFS submodule scattered data reader for coupling multi-physical simulations performed in different simulation programs. For instance, by considering a forward-coupling of a surface vibration simulation (mechanical system) to an acoustic propagation simulation using time-dependent acoustic absorbing material as a noise mitigation measure. The nearest-neighbor search of the target and source points from the interpolation is performed using the FLANN or the CGAL library. In doing so, the coupled field (e.g., surface velocity) is interpolated from a source representation consisting of field values physically stored and organized in a file directory to a target representation being the quadrature points in the case of the finite element method. A test case of the functionality is presented in the "testsuite" module of the openCFS software called "Abc2dcsvt". This scattered data reader module was successfully applied in numerous studies on flow-induced sound generation. Within this short article, the functionality, and usability of this module are described.

Stochastic inversion problems are typically encountered when it is wanted to quantify the uncertainty affecting the inputs of computer models. They consist in estimating input distributions from noisy, observable outputs, and such problems are increasingly examined in Bayesian contexts where the targeted inputs are affected by stochastic uncertainties. In this regard, a stochastic input can be qualified as meaningful if it explains most of the output uncertainty. While such inverse problems are characterized by identifiability conditions, constraints of "signal to noise", that can formalize this meaningfulness, should be accounted for within the definition of the model, prior to inference. This article investigates the possibility of forcing a solution to be meaningful in the context of parametric uncertainty quantification, through the tools of global sensitivity analysis and information theory (variance, entropy, Fisher information). Such forcings have mainly the nature of constraints placed on the input covariance, and can be made explicit by considering linear or linearizable models. Simulated experiments indicate that, when injected into the modeling process, these constraints can limit the influence of measurement or process noise on the estimation of the input distribution, and let hope for future extensions in a full non-linear framework, for example through the use of linear Gaussian mixtures.

We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First, we learn the manifold by identifying nonlinear structure in the data through a general representation learning problem. The proposed approach is driven by embeddings of low-order polynomial form. A projection onto the nonlinear manifold reveals the algebraic structure of the reduced-space system that governs the problem of interest. The matrix operators of the reduced-order model are then inferred from the data using operator inference. Numerical experiments on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase in accuracy that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.

A population-averaged additive subdistribution hazards model is proposed to assess the marginal effects of covariates on the cumulative incidence function and to analyze correlated failure time data subject to competing risks. This approach extends the population-averaged additive hazards model by accommodating potentially dependent censoring due to competing events other than the event of interest. Assuming an independent working correlation structure, an estimating equations approach is outlined to estimate the regression coefficients and a new sandwich variance estimator is proposed. The proposed sandwich variance estimator accounts for both the correlations between failure times and between the censoring times, and is robust to misspecification of the unknown dependency structure within each cluster. We further develop goodness-of-fit tests to assess the adequacy of the additive structure of the subdistribution hazards for the overall model and each covariate. Simulation studies are conducted to investigate the performance of the proposed methods in finite samples. We illustrate our methods using data from the STrategies to Reduce Injuries and Develop confidence in Elders (STRIDE) trial.

In recent years, the concept of introducing physics to machine learning has become widely popular. Most physics-inclusive ML-techniques however are still limited to a single geometry or a set of parametrizable geometries. Thus, there remains the need to train a new model for a new geometry, even if it is only slightly modified. With this work we introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization. This technique is based on a combination of a U-Net-like CNN and well established discretization methods from the field of the finite difference method.The results of our physics-aware CNN are compared to a state-of-the-art data-based approach. Additionally, it is also shown how our approach performs when combined with the data-based approach.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

Hashing has been widely used in approximate nearest search for large-scale database retrieval for its computation and storage efficiency. Deep hashing, which devises convolutional neural network architecture to exploit and extract the semantic information or feature of images, has received increasing attention recently. In this survey, several deep supervised hashing methods for image retrieval are evaluated and I conclude three main different directions for deep supervised hashing methods. Several comments are made at the end. Moreover, to break through the bottleneck of the existing hashing methods, I propose a Shadow Recurrent Hashing(SRH) method as a try. Specifically, I devise a CNN architecture to extract the semantic features of images and design a loss function to encourage similar images projected close. To this end, I propose a concept: shadow of the CNN output. During optimization process, the CNN output and its shadow are guiding each other so as to achieve the optimal solution as much as possible. Several experiments on dataset CIFAR-10 show the satisfying performance of SRH.

北京阿比特科技有限公司