亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Diabetic neuropathy is a disorder characterized by impaired nerve function and reduction of the number of epidermal nerve fibers per epidermal surface. Additionally, as neuropathy related nerve fiber loss and regrowth progresses over time, the two-dimensional spatial arrangement of the nerves becomes more clustered. These observations suggest that with development of neuropathy, the spatial pattern of diminished skin innervation is defined by a thinning process which remains incompletely characterized. We regard samples obtained from healthy controls and subjects suffering from diabetic neuropathy as realisations of planar point processes consisting of nerve entry points and nerve endings, and propose point process models based on spatial thinning to describe the change as neuropathy advances. Initially, the hypothesis that the nerve removal occurs completely at random is tested using independent random thinning of healthy patterns. Then, a dependent parametric thinning model that favors the removal of isolated nerve trees is proposed. Approximate Bayesian computation is used to infer the distribution of the model parameters, and the goodness-of-fit of the models is evaluated using both non-spatial and spatial summary statistics. Our findings suggest that the nerve mortality process changes behaviour as neuropathy advances.

相關內容

Nominal assortativity (or discrete assortativity) is widely used to characterize group mixing patterns and homophily in networks, enabling researchers to analyze how groups interact with one another. Here we demonstrate that the measure presents severe shortcomings when applied to networks with unequal group sizes and asymmetric mixing. We characterize these shortcomings analytically and use synthetic and empirical networks to show that nominal assortativity fails to account for group imbalance and asymmetric group interactions, thereby producing an inaccurate characterization of mixing patterns. We propose adjusted nominal assortativity and show that this adjustment recovers the expected assortativity in networks with various level of mixing. Furthermore, we propose an analytical method to assess asymmetric mixing by estimating the tendency of inter- and intra-group connectivities. Finally, we discuss how this approach enables uncovering hidden mixing patterns in real-world networks.

Stochastic optimization methods have been hugely successful in making large-scale optimization problems feasible when computing the full gradient is computationally prohibitive. Using the theory of modified equations for numerical integrators, we propose a class of stochastic differential equations that approximate the dynamics of general stochastic optimization methods more closely than the original gradient flow. Analyzing a modified stochastic differential equation can reveal qualitative insights about the associated optimization method. Here, we study mean-square stability of the modified equation in the case of stochastic coordinate descent.

This work considers Bayesian experimental design for the inverse boundary value problem of linear elasticity in a two-dimensional setting. The aim is to optimize the positions of compactly supported pressure activations on the boundary of the examined body in order to maximize the value of the resulting boundary deformations as data for the inverse problem of reconstructing the Lam\'e parameters inside the object. We resort to a linearized measurement model and adopt the framework of Bayesian experimental design, under the assumption that the prior and measurement noise distributions are mutually independent Gaussians. This enables the use of the standard Bayesian A-optimality criterion for deducing optimal positions for the pressure activations. The (second) derivatives of the boundary measurements with respect to the Lam\'e parameters and the positions of the boundary pressure activations are deduced to allow minimizing the corresponding objective function, i.e., the trace of the covariance matrix of the posterior distribution, by a gradient-based optimization algorithm. Two-dimensional numerical experiments are performed to demonstrate the functionality of our approach.

Stein's method for Gaussian process approximation can be used to bound the differences between the expectations of smooth functionals $h$ of a c\`adl\`ag random process $X$ of interest and the expectations of the same functionals of a well understood target random process $Z$ with continuous paths. Unfortunately, the class of smooth functionals for which this is easily possible is very restricted. Here, we prove an infinite dimensional Gaussian smoothing inequality, which enables the class of functionals to be greatly expanded -- examples are Lipschitz functionals with respect to the uniform metric, and indicators of arbitrary events -- in exchange for a loss of precision in the bounds. Our inequalities are expressed in terms of the smooth test function bound, an expectation of a functional of $X$ that is closely related to classical tightness criteria, a similar expectation for $Z$, and, for the indicator of a set $K$, the probability $\mathbb{P}(Z \in K^\theta \setminus K^{-\theta})$ that the target process is close to the boundary of $K$.

We show that for log-concave real random variables with fixed variance the Shannon differential entropy is minimized for an exponential random variable. We apply this result to derive upper bounds on capacities of additive noise channels with log-concave noise. We also improve constants in the reverse entropy power inequalities for log-concave random variables.

Bayesian binary regression is a prosperous area of research due to the computational challenges encountered by currently available methods either for high-dimensional settings or large datasets, or both. In the present work, we focus on the expectation propagation (EP) approximation of the posterior distribution in Bayesian probit regression under a multivariate Gaussian prior distribution. Adapting more general derivations in Anceschi et al. (2023), we show how to leverage results on the extended multivariate skew-normal distribution to derive an efficient implementation of the EP routine having a per-iteration cost that scales linearly in the number of covariates. This makes EP computationally feasible also in challenging high-dimensional settings, as shown in a detailed simulation study.

Binary responses arise in a multitude of statistical problems, including binary classification, bioassay, current status data problems and sensitivity estimation. There has been an interest in such problems in the Bayesian nonparametrics community since the early 1970s, but inference given binary data is intractable for a wide range of modern simulation-based models, even when employing MCMC methods. Recently, Christensen (2023) introduced a novel simulation technique based on counting permutations, which can estimate both posterior distributions and marginal likelihoods for any model from which a random sample can be generated. However, the accompanying implementation of this technique struggles when the sample size is too large (n > 250). Here we present perms, a new implementation of said technique which is substantially faster and able to handle larger data problems than the original implementation. It is available both as an R package and a Python library. The basic usage of perms is illustrated via two simple examples: a tractable toy problem and a bioassay problem. A more complex example involving changepoint analysis is also considered. We also cover the details of the implementation and illustrate the computational speed gain of perms via a simple simulation study.

Many researchers have identified distribution shift as a likely contributor to the reproducibility crisis in behavioral and biomedical sciences. The idea is that if treatment effects vary across individual characteristics and experimental contexts, then studies conducted in different populations will estimate different average effects. This paper uses ``generalizability" methods to quantify how much of the effect size discrepancy between an original study and its replication can be explained by distribution shift on observed unit-level characteristics. More specifically, we decompose this discrepancy into ``components" attributable to sampling variability (including publication bias), observable distribution shifts, and residual factors. We compute this decomposition for several directly-replicated behavioral science experiments and find little evidence that observable distribution shifts contribute appreciably to non-replicability. In some cases, this is because there is too much statistical noise. In other cases, there is strong evidence that controlling for additional moderators is necessary for reliable replication.

Deep neural networks have shown remarkable performance when trained on independent and identically distributed data from a fixed set of classes. However, in real-world scenarios, it can be desirable to train models on a continuous stream of data where multiple classification tasks are presented sequentially. This scenario, known as Continual Learning (CL) poses challenges to standard learning algorithms which struggle to maintain knowledge of old tasks while learning new ones. This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately. However, none considers the increasing difficulty of the classification task, which inherently results in performance loss for any model. In that sense, we analyze some limitations of current metrics and identify the presence of setup-induced forgetting. Therefore, we propose new metrics that account for the task's increasing difficulty. Through experiments on benchmark datasets, we demonstrate that our proposed metrics can provide new insights into the stability-plasticity trade-off achieved by models in the continual learning environment.

Graph Neural Networks (GNNs) are becoming increasingly popular due to their superior performance in critical graph-related tasks. While quantization is widely used to accelerate GNN computation, quantized training faces unprecedented challenges. Current quantized GNN training systems often have longer training times than their full-precision counterparts for two reasons: (i) addressing the accuracy challenge leads to excessive overhead, and (ii) the optimization potential exposed by quantization is not adequately leveraged. This paper introduces Tango which re-thinks quantization challenges and opportunities for graph neural network training on GPUs with three contributions: Firstly, we introduce efficient rules to maintain accuracy during quantized GNN training. Secondly, we design and implement quantization-aware primitives and inter-primitive optimizations that can speed up GNN training. Finally, we integrate Tango with the popular Deep Graph Library (DGL) system and demonstrate its superior performance over state-of-the-art approaches on various GNN models and datasets.

北京阿比特科技有限公司