Intracerebral hemorrhage is one of the diseases with the highest mortality and poorest prognosis worldwide. Spontaneous intracerebral hemorrhage (SICH) typically presents acutely, prompt and expedited radiological examination is crucial for diagnosis, localization, and quantification of the hemorrhage. Early detection and accurate segmentation of perihematomal edema (PHE) play a critical role in guiding appropriate clinical intervention and enhancing patient prognosis. However, the progress and assessment of computer-aided diagnostic methods for PHE segmentation and detection face challenges due to the scarcity of publicly accessible brain CT image datasets. This study establishes a publicly available CT dataset named PHE-SICH-CT-IDS for perihematomal edema in spontaneous intracerebral hemorrhage. The dataset comprises 120 brain CT scans and 7,022 CT images, along with corresponding medical information of the patients. To demonstrate its effectiveness, classical algorithms for semantic segmentation, object detection, and radiomic feature extraction are evaluated. The experimental results confirm the suitability of PHE-SICH-CT-IDS for assessing the performance of segmentation, detection and radiomic feature extraction methods. To the best of our knowledge, this is the first publicly available dataset for PHE in SICH, comprising various data formats suitable for applications across diverse medical scenarios. We believe that PHE-SICH-CT-IDS will allure researchers to explore novel algorithms, providing valuable support for clinicians and patients in the clinical setting. PHE-SICH-CT-IDS is freely published for non-commercial purpose at: //figshare.com/articles/dataset/PHE-SICH-CT-IDS/23957937.
As labor shortage increases in the health sector, the demand for assistive robotics grows. However, the needed test data to develop those robots is scarce, especially for the application of active 3D object detection, where no real data exists at all. This short paper counters this by introducing such an annotated dataset of real environments. The captured environments represent areas which are already in use in the field of robotic health care research. We further provide ground truth data within one room, for assessing SLAM algorithms running directly on a health care robot.
Large Language Models (LLMs) have been garnering significant attention of AI researchers, especially following the widespread popularity of ChatGPT. However, due to LLMs' intricate architecture and vast parameters, several concerns and challenges regarding their quality assurance require to be addressed. In this paper, a fine-tuned GPT-based sentiment analysis model is first constructed and studied as the reference in AI quality analysis. Then, the quality analysis related to data adequacy is implemented, including employing the content-based approach to generate reasonable adversarial review comments as the wrongly-annotated data, and developing surprise adequacy (SA)-based techniques to detect these abnormal data. Experiments based on Amazon.com review data and a fine-tuned GPT model were implemented. Results were thoroughly discussed from the perspective of AI quality assurance to present the quality analysis of an LLM model on generated adversarial textual data and the effectiveness of using SA on anomaly detection in data quality assurance.
The immense evolution in Large Language Models (LLMs) has underscored the importance of massive, heterogeneous, and high-quality data. A data recipe is a mixture of data from different sources for training LLMs, which plays a vital role in LLMs' performance. Existing open-source tools for LLM data processing are mostly tailored for specific data recipes. To continuously uncover the potential of LLMs, incorporate data from new sources, and improve LLMs' performance, we build a new system named Data-Juicer, with which we can efficiently generate diverse data recipes, explore different possibilities in forming data mixtures, and evaluate their effects on model performance. Different from traditional data-analytics pipelines, Data-Juicer faces some unique challenges. Firstly, the possible data sources for forming data recipes are truly heterogeneous and massive with various qualities. Secondly, it is extremely expensive to precisely evaluate data recipes' impact on LLMs' performance. Thirdly, the end users of Data-Juicer, model developers, need sufficient flexibility to configure and evaluate different data recipes. Data-Juicer features a fine-grained abstraction of pipelines for constructing data recipes, with over 50 built-in operators for easy composition and extension. By incorporating visualization and auto-evaluation capabilities, Data-Juicer enables a timely feedback loop for both LLM pre-training and fine-tuning. Further, Data-Juicer is optimized and integrated with ecosystems for LLM training, evaluation, and distributed computing. The data recipes derived with Data-Juicer gain notable improvements on state-of-the-art LLMs, by up to 7.45% increase in averaged score across 16 LLM benchmarks and 17.5% higher win rate in pair-wise GPT-4 evaluations. Our system, data recipes, and tutorials are released, calling for broader data-centric research on training and understanding LLMs.
Outbreaks of hand-foot-and-mouth disease(HFMD) have been associated with significant morbidity and, in severe cases, mortality. Accurate forecasting of daily admissions of pediatric HFMD patients is therefore crucial for aiding the hospital in preparing for potential outbreaks and mitigating nosocomial transmissions. To address this pressing need, we propose a novel transformer-based model with a U-net shape, utilizing the patching strategy and the joint prediction strategy that capitalizes on insights from herpangina, a disease closely correlated with HFMD. This model also integrates representation learning by introducing reconstruction loss as an auxiliary loss. The results show that our U-net Patching Time Series Transformer (UPTST) model outperforms existing approaches in both long- and short-arm prediction accuracy of HFMD at hospital-level. Furthermore, the exploratory extension experiments show that the model's capabilities extend beyond prediction of infectious disease, suggesting broader applicability in various domains.
Nuclei detection and segmentation in hematoxylin and eosin-stained (H&E) tissue images are important clinical tasks and crucial for a wide range of applications. However, it is a challenging task due to nuclei variances in staining and size, overlapping boundaries, and nuclei clustering. While convolutional neural networks have been extensively used for this task, we explore the potential of Transformer-based networks in this domain. Therefore, we introduce a new method for automated instance segmentation of cell nuclei in digitized tissue samples using a deep learning architecture based on Vision Transformer called CellViT. CellViT is trained and evaluated on the PanNuke dataset, which is one of the most challenging nuclei instance segmentation datasets, consisting of nearly 200,000 annotated Nuclei into 5 clinically important classes in 19 tissue types. We demonstrate the superiority of large-scale in-domain and out-of-domain pre-trained Vision Transformers by leveraging the recently published Segment Anything Model and a ViT-encoder pre-trained on 104 million histological image patches - achieving state-of-the-art nuclei detection and instance segmentation performance on the PanNuke dataset with a mean panoptic quality of 0.50 and an F1-detection score of 0.83. The code is publicly available at //github.com/TIO-IKIM/CellViT
Renal cancer is one of the most prevalent cancers worldwide. Clinical signs of kidney cancer include hematuria and low back discomfort, which are quite distressing to the patient. Some surgery-based renal cancer treatments like laparoscopic partial nephrectomy relys on the 3D kidney parsing on computed tomography angiography (CTA) images. Many automatic segmentation techniques have been put forward to make multi-structure segmentation of the kidneys more accurate. The 3D visual model of kidney anatomy will help clinicians plan operations accurately before surgery. However, due to the diversity of the internal structure of the kidney and the low grey level of the edge. It is still challenging to separate the different parts of the kidney in a clear and accurate way. In this paper, we propose a channel extending and axial attention catching Network(CANet) for multi-structure kidney segmentation. Our solution is founded based on the thriving nn-UNet architecture. Firstly, by extending the channel size, we propose a larger network, which can provide a broader perspective, facilitating the extraction of complex structural information. Secondly, we include an axial attention catching(AAC) module in the decoder, which can obtain detailed information for refining the edges. We evaluate our CANet on the KiPA2022 dataset, achieving the dice scores of 95.8%, 89.1%, 87.5% and 84.9% for kidney, tumor, artery and vein, respectively, which helps us get fourth place in the challenge.
The relationship between brain structure and function is critical for revealing the pathogenesis of brain disease, including Alzheimer's disease (AD). However, it is a great challenge to map brain structure-function connections due to various reasons. In this work, a bidirectional graph generative adversarial networks (BGGAN) is proposed to represent brain structure-function connections. Specifically, by designing a module incorporating inner graph convolution network (InnerGCN), the generators of BGGAN can employ features of direct and indirect brain regions to learn the mapping function between structural domain and functional domain. Besides, a new module named Balancer is designed to counterpoise the optimization between generators and discriminators. By introducing the Balancer into BGGAN, both the structural generator and functional generator can not only alleviate the issue of mode collapse but also learn complementarity of structural and functional features. Experimental results using ADNI datasets show that the both the generated structure connections and generated function connections can improve the identification accuracy of AD. More importantly, based the proposed model, it is found that the relationship between brain structure and function is not a complete one-to-one correspondence. Brain structure is the basis of brain function. The strong structural connections are almost accompanied by strong functional connections.
Lung cancer is highly lethal, emphasizing the critical need for early detection. However, identifying lung nodules poses significant challenges for radiologists, who rely heavily on their expertise and experience for accurate diagnosis. To address this issue, computer-aided diagnosis systems based on machine learning techniques have emerged to assist doctors in identifying lung nodules from computed tomography (CT) scans. Unfortunately, existing networks in this domain often suffer from computational complexity, leading to high rates of false negatives and false positives, limiting their effectiveness. To address these challenges, we present an innovative model that harnesses the strengths of both convolutional neural networks and vision transformers. Inspired by object detection in videos, we treat each 3D CT image as a video, individual slices as frames, and lung nodules as objects, enabling a time-series application. The primary objective of our work is to overcome hardware limitations during model training, allowing for efficient processing of 2D data while utilizing inter-slice information for accurate identification based on 3D image context. We validated the proposed network by applying a 10-fold cross-validation technique to the publicly available Lung Nodule Analysis 2016 dataset. Our proposed architecture achieves an average sensitivity criterion of 97.84% and a competition performance metrics (CPM) of 96.0% with few parameters. Comparative analysis with state-of-the-art advancements in lung nodule identification demonstrates the significant accuracy achieved by our proposed model.
Diagnosing lung inflammation, particularly pneumonia, is of paramount importance for effectively treating and managing the disease. Pneumonia is a common respiratory infection caused by bacteria, viruses, or fungi and can indiscriminately affect people of all ages. As highlighted by the World Health Organization (WHO), this prevalent disease tragically accounts for a substantial 15% of global mortality in children under five years of age. This article presents a comparative study of the Inception-ResNet deep learning model's performance in diagnosing pneumonia from chest radiographs. The study leverages Mendeleys chest X-ray images dataset, which contains 5856 2D images, including both Viral and Bacterial Pneumonia X-ray images. The Inception-ResNet model is compared with seven other state-of-the-art convolutional neural networks (CNNs), and the experimental results demonstrate the Inception-ResNet model's superiority in extracting essential features and saving computation runtime. Furthermore, we examine the impact of transfer learning with fine-tuning in improving the performance of deep convolutional models. This study provides valuable insights into using deep learning models for pneumonia diagnosis and highlights the potential of the Inception-ResNet model in this field. In classification accuracy, Inception-ResNet-V2 showed superior performance compared to other models, including ResNet152V2, MobileNet-V3 (Large and Small), EfficientNetV2 (Large and Small), InceptionV3, and NASNet-Mobile, with substantial margins. It outperformed them by 2.6%, 6.5%, 7.1%, 13%, 16.1%, 3.9%, and 1.6%, respectively, demonstrating its significant advantage in accurate classification.
Mental disorders present challenges in diagnosis and treatment due to their complex and heterogeneous nature. Electroencephalogram (EEG) has shown promise as a potential biomarker for these disorders. However, existing methods for analyzing EEG signals have limitations in addressing heterogeneity and capturing complex brain activity patterns between regions. This paper proposes a novel random effects state-space model (RESSM) for analyzing large-scale multi-channel resting-state EEG signals, accounting for the heterogeneity of brain connectivities between groups and individual subjects. We incorporate multi-level random effects for temporal dynamical and spatial mapping matrices and address nonstationarity so that the brain connectivity patterns can vary over time. The model is fitted under a Bayesian hierarchical model framework coupled with a Gibbs sampler. Compared to previous mixed-effects state-space models, we directly model high-dimensional random effects matrices without structural constraints and tackle the challenge of identifiability. Through extensive simulation studies, we demonstrate that our approach yields valid estimation and inference. We apply RESSM to a multi-site clinical trial of Major Depressive Disorder (MDD). Our analysis uncovers significant differences in resting-state brain temporal dynamics among MDD patients compared to healthy individuals. In addition, we show the subject-level EEG features derived from RESSM exhibit a superior predictive value for the heterogeneous treatment effect compared to the EEG frequency band power, suggesting the potential of EEG as a valuable biomarker for MDD.