亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Renal cancer is one of the most prevalent cancers worldwide. Clinical signs of kidney cancer include hematuria and low back discomfort, which are quite distressing to the patient. Some surgery-based renal cancer treatments like laparoscopic partial nephrectomy relys on the 3D kidney parsing on computed tomography angiography (CTA) images. Many automatic segmentation techniques have been put forward to make multi-structure segmentation of the kidneys more accurate. The 3D visual model of kidney anatomy will help clinicians plan operations accurately before surgery. However, due to the diversity of the internal structure of the kidney and the low grey level of the edge. It is still challenging to separate the different parts of the kidney in a clear and accurate way. In this paper, we propose a channel extending and axial attention catching Network(CANet) for multi-structure kidney segmentation. Our solution is founded based on the thriving nn-UNet architecture. Firstly, by extending the channel size, we propose a larger network, which can provide a broader perspective, facilitating the extraction of complex structural information. Secondly, we include an axial attention catching(AAC) module in the decoder, which can obtain detailed information for refining the edges. We evaluate our CANet on the KiPA2022 dataset, achieving the dice scores of 95.8%, 89.1%, 87.5% and 84.9% for kidney, tumor, artery and vein, respectively, which helps us get fourth place in the challenge.

相關內容

Accurate and automated segmentation of intervertebral discs (IVDs) in medical images is crucial for assessing spine-related disorders, such as osteoporosis, vertebral fractures, or IVD herniation. We present HCA-Net, a novel contextual attention network architecture for semantic labeling of IVDs, with a special focus on exploiting prior geometric information. Our approach excels at processing features across different scales and effectively consolidating them to capture the intricate spatial relationships within the spinal cord. To achieve this, HCA-Net models IVD labeling as a pose estimation problem, aiming to minimize the discrepancy between each predicted IVD location and its corresponding actual joint location. In addition, we introduce a skeletal loss term to reinforce the model's geometric dependence on the spine. This loss function is designed to constrain the model's predictions to a range that matches the general structure of the human vertebral skeleton. As a result, the network learns to reduce the occurrence of false predictions and adaptively improves the accuracy of IVD location estimation. Through extensive experimental evaluation on multi-center spine datasets, our approach consistently outperforms previous state-of-the-art methods on both MRI T1w and T2w modalities. The codebase is accessible to the public on \href{//github.com/xmindflow/HCA-Net}{GitHub}.

Histopathology serves as the gold standard for medical diagnosis but faces application limitations due to the shortage of medical resources. Leveraging deep learning, computer-aided diagnosis has the potential to alleviate the pathologist scarcity and provide timely clinical analysis. However, developing a reliable model generally necessitates substantial data for training, which is challenging in pathological field. In response, we propose an adaptive depth-controlled bidirectional diffusion (ADBD) network for image data generation. The domain migration approach can work with small trainset and overcome the diffusion overfitting by source information guidance. Specifically, we developed a hybrid attention strategy to blend global and local attention priorities, which guides the bidirectional diffusion and ensures the migration success. In addition, we developed the adaptive depth-controlled strategy to simulate physiological transformations, capable of yielding unlimited cross-domain intermediate images with corresponding soft labels. ADBD is effective for overcoming pathological image data deficiency and supportable for further pathology-related research.

Retinal disease is one of the primary causes of visual impairment, and early diagnosis is essential for preventing further deterioration. Nowadays, many works have explored Transformers for diagnosing diseases due to their strong visual representation capabilities. However, retinal diseases exhibit milder forms and often present with overlapping signs, which pose great difficulties for accurate multi-class classification. Therefore, we propose a new framework named Multi-Scale Patch Message Passing Swin Transformer for multi-class retinal disease classification. Specifically, we design a Patch Message Passing (PMP) module based on the Message Passing mechanism to establish global interaction for pathological semantic features and to exploit the subtle differences further between different diseases. Moreover, considering the various scale of pathological features we integrate multiple PMP modules for different patch sizes. For evaluation, we have constructed a new dataset, named OPTOS dataset, consisting of 1,033 high-resolution fundus images photographed by Optos camera and conducted comprehensive experiments to validate the efficacy of our proposed method. And the results on both the public dataset and our dataset demonstrate that our method achieves remarkable performance compared to state-of-the-art methods.

Skin cancer is the most common type of cancer in the United States and is estimated to affect one in five Americans. Recent advances have demonstrated strong performance on skin cancer detection, as exemplified by state of the art performance in the SIIM-ISIC Melanoma Classification Challenge; however these solutions leverage ensembles of complex deep neural architectures requiring immense storage and compute costs, and therefore may not be tractable. A recent movement for TinyML applications is integrating Double-Condensing Attention Condensers (DC-AC) into a self-attention neural network backbone architecture to allow for faster and more efficient computation. This paper explores leveraging an efficient self-attention structure to detect skin cancer in skin lesion images and introduces a deep neural network design with DC-AC customized for skin cancer detection from skin lesion images. The final model is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.

Coronary Artery Disease (CAD) is one of the most common forms of heart disease, which is caused by a buildup of atherosclerotic plaque (known as stenosis) in the coronary arteries, leading to insufficient supplement of blood, oxygen, and nutrients to the heart. Fractional Flow Reserve (FFR), measuring the pressure ratio between the aorta and distal coronary artery, is an invasive physiologic gold standard for assessing the severity of coronary artery stenosis. Despite its benefits, invasive FFR assessment is still underutilized due to its high cost, time-consuming, experimental variability, and increased risk to patients. In this study, an attention-based multi-fidelity machine learning model (AttMulFid) is proposed for computationally efficient and accurate FFR assessment with uncertainty measurement. Within AttMulFid, an autoencoder is utilized to intelligently select geometric features from coronary arteries, with additional attention on the key area. Results show that the geometric features are able to represent the entirety of the geometric information and intelligently allocate attention based on crucial properties of geometry. Furthermore, the AttMulFid is a feasible approach for non-invasive, rapid, and accurate FFR assessment (with 0.002s/simulation).

Emotional well-being significantly influences mental health and overall quality of life. As therapy chatbots become increasingly prevalent, their ability to comprehend and respond empathetically to users' emotions remains limited. This paper addresses this limitation by proposing an approach to enhance therapy chatbots with auditory perception, enabling them to understand users' feelings and provide human-like empathy. The proposed method incorporates speech emotion recognition (SER) techniques using Convolutional Neural Network (CNN) models and the ShEMO dataset to accurately detect and classify negative emotions, including anger, fear, and sadness. The SER model achieves a validation accuracy of 88%, demonstrating its effectiveness in recognizing emotional states from speech signals. Furthermore, a recommender system is developed, leveraging the SER model's output to generate personalized recommendations for managing negative emotions, for which a new bilingual dataset was generated as well since there is no such dataset available for this task. The recommender model achieves an accuracy of 98% by employing a combination of global vectors for word representation (GloVe) and LSTM models. To provide a more immersive and empathetic user experience, a text-to-speech model called GlowTTS is integrated, enabling the therapy chatbot to audibly communicate the generated recommendations to users in both English and Persian. The proposed approach offers promising potential to enhance therapy chatbots by providing them with the ability to recognize and respond to users' emotions, ultimately improving the delivery of mental health support for both English and Persian-speaking users.

Whole slide image (WSI) assessment is a challenging and crucial step in cancer diagnosis and treatment planning. WSIs require high magnifications to facilitate sub-cellular analysis. Precise annotations for patch- or even pixel-level classifications in the context of gigapixel WSIs are tedious to acquire and require domain experts. Coarse-grained labels, on the other hand, are easily accessible, which makes WSI classification an ideal use case for multiple instance learning (MIL). In our work, we propose a novel embedding-based Dual-Query MIL pipeline (DQ-MIL). We contribute to both the embedding and aggregation steps. Since all-purpose visual feature representations are not yet available, embedding models are currently limited in terms of generalizability. With our work, we explore the potential of dynamic meta-embedding based on cutting-edge self-supervised pre-trained models in the context of MIL. Moreover, we propose a new MIL architecture capable of combining MIL-attention with correlated self-attention. The Dual-Query Perceiver design of our approach allows us to leverage the concept of self-distillation and to combine the advantages of a small model in the context of a low data regime with the rich feature representation of a larger model. We demonstrate the superior performance of our approach on three histopathological datasets, where we show improvement of up to 10% over state-of-the-art approaches.

Pathological alterations in the human vascular system underlie many chronic diseases, such as atherosclerosis and aneurysms. However, manually analyzing diagnostic images of the vascular system, such as computed tomographic angiograms (CTAs) is a time-consuming and tedious process. To address this issue, we propose a deep learning model to segment the vascular system in CTA images of patients undergoing surgery for peripheral arterial disease (PAD). Our study focused on accurately segmenting the vascular system (1) from the descending thoracic aorta to the iliac bifurcation and (2) from the descending thoracic aorta to the knees in CTA images using deep learning techniques. Our approach achieved average Dice accuracies of 93.5% and 80.64% in test dataset for (1) and (2), respectively, highlighting its high accuracy and potential clinical utility. These findings demonstrate the use of deep learning techniques as a valuable tool for medical professionals to analyze the health of the vascular system efficiently and accurately. Please visit the GitHub page for this paper at //github.com/pip-alireza/TransOnet.

In the field of clinical medicine, computed tomography (CT) is an effective medical imaging modality for the diagnosis of various pathologies. Compared with X-ray images, CT images can provide more information, including multi-planar slices and three-dimensional structures for clinical diagnosis. However, CT imaging requires patients to be exposed to large doses of ionizing radiation for a long time, which may cause irreversible physical harm. In this paper, we propose an Uncertainty-aware MedNeRF (UMedNeRF) network based on generated radiation fields. The network can learn a continuous representation of CT projections from 2D X-ray images by obtaining the internal structure and depth information and using adaptive loss weights to ensure the quality of the generated images. Our model is trained on publicly available knee and chest datasets, and we show the results of CT projection rendering with a single X-ray and compare our method with other methods based on generated radiation fields.

Coronary artery stenosis is a critical health risk, and its precise identification in Coronary Angiography (CAG) can significantly aid medical practitioners in accurately evaluating the severity of a patient's condition. The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task. To tackle these obstacles, we introduce a semi-supervised approach for cardiovascular stenosis segmentation. Our strategy begins with data augmentation, specifically tailored to replicate the structural characteristics of coronary arteries. We then apply a pseudo-label-based semi-supervised learning technique that leverages the data generated through our augmentation process. Impressively, our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics using x-ray angiography imagEs (ARCADE) Stenosis Detection Algorithm challenge by utilizing a single model instead of relying on an ensemble of multiple models. This success emphasizes our method's capability and efficiency in providing an automated solution for accurately assessing stenosis severity from medical imaging data.

北京阿比特科技有限公司