亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Analysing historical patterns of artificial intelligence (AI) adoption can inform decisions about AI capability uplift, but research to date has provided a limited view of AI adoption across various fields of research. In this study we examine worldwide adoption of AI technology within 333 fields of research during 1960-2021. We do this by using bibliometric analysis with 137 million peer-reviewed publications captured in The Lens database. We define AI using a list of 214 phrases developed by expert working groups at the Organisation for Economic Cooperation and Development (OECD). We found that 3.1 million of the 137 million peer-reviewed research publications during the entire period were AI-related, with a surge in AI adoption across practically all research fields (physical science, natural science, life science, social science and the arts and humanities) in recent years. The diffusion of AI beyond computer science was early, rapid and widespread. In 1960 14% of 333 research fields were related to AI (many in computer science), but this increased to cover over half of all research fields by 1972, over 80% by 1986 and over 98% in current times. We note AI has experienced boom-bust cycles historically: the AI "springs" and "winters". We conclude that the context of the current surge appears different, and that interdisciplinary AI application is likely to be sustained.

相關內容

Personalized recommendations form an important part of today's internet ecosystem, helping artists and creators to reach interested users, and helping users to discover new and engaging content. However, many users today are skeptical of platforms that personalize recommendations, in part due to historically careless treatment of personal data and data privacy. Now, businesses that rely on personalized recommendations are entering a new paradigm, where many of their systems must be overhauled to be privacy-first. In this article, we propose an algorithm for personalized recommendations that facilitates both precise and differentially-private measurement. We consider advertising as an example application, and conduct offline experiments to quantify how the proposed privacy-preserving algorithm affects key metrics related to user experience, advertiser value, and platform revenue compared to the extremes of both (private) non-personalized and non-private, personalized implementations.

This article revisits the fundamental problem of parameter selection for Gaussian process interpolation. By choosing the mean and the covariance functions of a Gaussian process within parametric families, the user obtains a family of Bayesian procedures to perform predictions about the unknown function, and must choose a member of the family that will hopefully provide good predictive performances. We base our study on the general concept of scoring rules, which provides an effective framework for building leave-one-out selection and validation criteria, and a notion of extended likelihood criteria based on an idea proposed by Fasshauer and co-authors in 2009, which makes it possible to recover standard selection criteria such as, for instance, the generalized cross-validation criterion. Under this setting, we empirically show on several test problems of the literature that the choice of an appropriate family of models is often more important than the choice of a particular selection criterion (e.g., the likelihood versus a leave-one-out selection criterion). Moreover, our numerical results show that the regularity parameter of a Mat{\'e}rn covariance can be selected effectively by most selection criteria.

To track trends in the perception of literary translation around the political transformation in 1989 in Hungary, a coding system was developed on the paragraphs of the 1980-1999 issues of the literary journal Alf\"old. This paper describes how we trained BERT models to carry over the coding system to the 1980-1999 issues of the literary journal Nagyvil\'ag. We use extensive hyperparameter tuning, loss functions robust to label unbalance, 10-fold cross-validation for precise evaluations and a model ensemble for prediction, manual validation on the predict set, a new calibration method to better predict label counts for sections of the Nagyvil\'ag corpus, and to study the relations between labels, we construct label relation networks.

Combining observational and experimental data for causal inference can improve treatment effect estimation. However, many observational data sets cannot be released due to data privacy considerations, so one researcher may not have access to both experimental and observational data. Nonetheless, a small amount of risk of disclosing sensitive information might be tolerable to organizations that house confidential data. In these cases, organizations can employ data privacy techniques, which decrease disclosure risk, potentially at the expense of data utility. In this paper, we explore disclosure limiting transformations of observational data, which can be combined with experimental data to estimate the sample and population average treatment effects. We consider leveraging observational data to improve generalizability of treatment effect estimates when a randomized experiment (RCT) is not representative of the population of interest, and to increase precision of treatment effect estimates. Through simulation studies, we illustrate the trade-off between privacy and utility when employing different disclosure limiting transformations. We find that leveraging transformed observational data in treatment effect estimation can still improve estimation over only using data from an RCT.

As advancements in artificial intelligence (AI) propel progress in the life sciences, they may also enable the weaponisation and misuse of biological agents. This article differentiates two classes of AI tools that pose such biosecurity risks: large language models (LLMs) and biological design tools (BDTs). LLMs, such as GPT-4, are already able to provide dual-use information that removes some barriers encountered by historical biological weapons efforts. As LLMs are turned into lab assistants and autonomous science tools, this will further increase their ability to support research. Thus, LLMs will in particular lower barriers to biological misuse. In contrast, BDTs will expand the capabilities of sophisticated actors. Concretely, BDTs may enable the creation of pandemic pathogens substantially worse than anything seen to date and could enable forms of more predictable and targeted biological weapons. In combination, LLMs and BDTs could raise the ceiling of harm from biological agents and could make them broadly accessible. A range of interventions would help to manage risks. Independent pre-release evaluations could ensure that developers have eliminated dangerous capabilities of new models. Risks from powerful science tools might be mitigated through providing differentiated access to legitimate researchers. Lastly, essential for mitigating risks will be universal and enhanced screening of gene synthesis products.

In the future, it is anticipated that software-defined networking (SDN) will become the preferred platform for deploying diverse networks. Compared to traditional networks, SDN separates the control and data planes for efficient domain-wide traffic routing and management. The controllers in the control plane are responsible for programming data plane forwarding devices, while the top layer, the application plane, enforces policies and programs the network. The different levels of the SDN use interfaces for communication. However, SDN faces challenges with traffic distribution, such as load imbalance, which can negatively affect the network performance. Consequently, developers have developed various SDN load-balancing solutions to enhance SDN effectiveness. In addition, researchers are considering the potential of implementing some artificial intelligence (AI) approaches into SDN to improve network resource usage and overall performance due to the fast growth of the AI field. This survey focuses on the following: Firstly, analyzing the SDN architecture and investigating the problem of load balancing in SDN. Secondly, categorizing AI-based load balancing methods and thoroughly assessing these mechanisms from various perspectives, such as the algorithm/technique employed, the tackled problem, and their strengths and weaknesses. Thirdly, summarizing the metrics utilized to measure the effectiveness of these techniques. Finally, identifying the trends and challenges of AI-based load balancing for future research.

We present our proposed solution to the BabyLM challenge [arXiv:2301.11796], whose goal was to improve the sample efficiency of language models. We trained an ensemble consisting of a GPT-2 and small LLaMA models on the developmentally-plausible, 10M-word BabyLM dataset, then distilled it into a small, 58M-parameter LLaMA model, which exceeds in performance both of its teachers as well as a similar model trained without distillation. This suggests that distillation can not only retain the full performance of the teacher model when the latter is trained on a sufficiently small dataset; it can exceed it, and lead to significantly better performance than direct training.

In recent years, advances in neuroscience and artificial intelligence have paved the way for unprecedented opportunities for understanding the complexity of the brain and its emulation by computational systems. Cutting-edge advancements in neuroscience research have revealed the intricate relationship between brain structure and function, while the success of artificial neural networks highlights the importance of network architecture. Now is the time to bring them together to better unravel how intelligence emerges from the brain's multiscale repositories. In this review, we propose the Digital Twin Brain (DTB) as a transformative platform that bridges the gap between biological and artificial intelligence. It consists of three core elements: the brain structure that is fundamental to the twinning process, bottom-layer models to generate brain functions, and its wide spectrum of applications. Crucially, brain atlases provide a vital constraint, preserving the brain's network organization within the DTB. Furthermore, we highlight open questions that invite joint efforts from interdisciplinary fields and emphasize the far-reaching implications of the DTB. The DTB can offer unprecedented insights into the emergence of intelligence and neurological disorders, which holds tremendous promise for advancing our understanding of both biological and artificial intelligence, and ultimately propelling the development of artificial general intelligence and facilitating precision mental healthcare.

This paper critically evaluates the European Commission's proposed AI Act's approach to risk management and risk acceptability for high-risk AI systems that pose risks to fundamental rights and safety. The Act aims to promote "trustworthy" AI with a proportionate regulatory burden. Its provisions on risk acceptability require residual risks from high-risk systems to be reduced or eliminated "as far as possible", having regard to the "state of the art". This criterion, especially if interpreted narrowly, is unworkable and promotes neither proportionate regulatory burden, nor trustworthiness. By contrast the Parliament's most recent draft amendments to the risk management provisions introduce "reasonableness", cost-benefit analysis, and are more transparent about the value-laden and contextual nature of risk acceptability judgements. This paper argues that the Parliament's approach is more workable, and better balances the goals of proportionality and trustworthiness. It explains what reasonableness in risk acceptability judgments would entail, drawing on principles from negligence law and European medical devices regulation. And it contends that the approach to risk acceptability judgments need a firm foundation of civic legitimacy: including detailed guidance or involvement from regulators, and meaningful input from affected stakeholders.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

北京阿比特科技有限公司